• <ins id="pjuwb"></ins>
    <blockquote id="pjuwb"><pre id="pjuwb"></pre></blockquote>
    <noscript id="pjuwb"></noscript>
          <sup id="pjuwb"><pre id="pjuwb"></pre></sup>
            <dd id="pjuwb"></dd>
            <abbr id="pjuwb"></abbr>

            Maths - Angle between vectors

            LINK: http://www.euclideanspace.com/maths/algebra/vectors/angleBetween/index.htm

            How do we calculate the angle between two vectors?

            For 2D Vectors

            This is relatively simple because there is only one degree of freedom for 2D rotations. If v1 and v2 are normalised so that |v1|=|v2|=1, then,

            angle = acos(v1•v2)

            where:

            • • = 'dot' product (see box on right of page).
            • acos = arc cos = inverse of cosine function see trigonometry page.
            • |v1|= magnitude of v1.

            The only problem is, this won't give all possible values between 0° and 360°, or -180° and +180°. In other words, it won't tell us if v1 is ahead or behind v2, to go from v1 to v2 is the opposite direction from v2 to v1.

            In most math libraries acos will usually return a value between 0 and PI (in radians) which is 0° and 180°.

            If we want a + or - value to indicate which vector is ahead, then we probably need to use the atan2 function (as explained on this page). using:

            angle of 2 relative to 1= atan2(v2.y,v2.x) - atan2(v1.y,v1.x)

            For 3D Vectors

            Axis Angle Result

            This is easiest to calculate using axis-angle representation because:

            • the angle is given by acos of the dot product of the two (normalised) vectors: v1•v2 = |v1||v2| cos(angle)
            • the axis is given by the cross product of the two vectors, the length of this axis is given by |v1 x v2| = |v1||v2| sin(angle).

            as explained here

            this is taken from this discussion.

            So, if v1 and v2 are normalised so that |v1|=|v2|=1, then,

            angle = acos(v1•v2)

            axis = norm(v1 x v2)

            If the vectors are parallel (angle = 0 or 180 degrees) then the length of v1 x v2 will be zero because sin(0)=sin(180)=0. In the zero case the axis does not matter and can be anything because there is no rotation round it. In the 180 degree case the axis can be anything at 90 degrees to the vectors so there is a whole range of possible axies.

            angle (degrees) sin(angle) cos(angle) v1•v2 v1 x v2
            0 0 1 1 0,0,0
            90 1 0 0 unit len
            180 0 -1 -1 0,0,0
            270 -1 0 0 unit len

            Quaternion Result

            One approach might be to define a quaternion which, when multiplied by a vector, rotates it:

            p2=q * p1

            This almost works as explained on this page.

            However, to rotate a vector, we must use this formula:

            p2=q * p1 * conj(q)

            where:

            • p2 = is a vector representing a point after being rotated
            • q = is a quaternion representing a rotation.
            • p1= is a vector representing a point before being rotated

            This is a bit messy to solve for q, I am therefore grateful to minorlogic for the following approach which converts the axis angle result to a quaternion:

            The axis angle can be converted to a quaternion as follows, let x,y,z,w be elements of quaternion, these can be expressed in terms of axis angle as explained here.

            angle = arcos(v1•v2/ |v1||v2|)
            axis = norm(v1 x v2)
            s = sin(angle/2)
            x = axis.x *s
            y = axis.y *s
            z = axis.z *s
            w = cos(angle/2)

            We can use this half angle trig formula on this page: sin(angle/2) = 0.5 sin(angle) / cos(angle/2)

            so substituting in quaternion formula gives:
            s = 0.5 sin(angle) / cos(angle/2)
            x = norm(v1 x v2).x *s
            y = norm(v1 x v2).y *s
            z = norm(v1 x v2).z *s
            w = cos(angle/2)

            multiply x,y,z and w by 2* cos(angle/2) (this will de normalise the quaternion but we can always normalise later)

            x = norm(v1 x v2).x * sin(angle)
            y = norm(v1 x v2).y * sin(angle)
            z = norm(v1 x v2).z * sin(angle)
            w = 2 * cos(angle/2) * cos(angle/2)

            now substitute half angle trig formula on this page: cos(angle/2) = sqrt(0.5*(1 + cos (angle)))

            x = norm(v1 x v2).x * sin(angle)
            y = norm(v1 x v2).y * sin(angle)
            z = norm(v1 x v2).z * sin(angle)
            w = 1 + cos (angle)

            because |v1 x v2| = |v1||v2| sin(angle) we can normalise (v1 x v2) by dividing it with sin(angle),

            also apply v1•v2 = |v1||v2| cos(angle)so,

            x = (v1 x v2).x / |v1||v2|
            y = (v1 x v2).y/ |v1||v2|
            z = (v1 x v2).z/ |v1||v2|
            w = 1 + v1•v2 / |v1||v2|

            If v1 and v2 are already normalised then |v1||v2|=1 so,

            x = (v1 x v2).x
            y = (v1 x v2).y
            z = (v1 x v2).z
            w = 1 + v1•v2

            If v1 and v2 are not already normalised then multiply by |v1||v2| gives:

            x = (v1 x v2).x
            y = (v1 x v2).y
            z = (v1 x v2).z
            w = |v1||v2| + v1•v2

            Matrix Result

            Using the quaternion to matrix conversion here we get:

            1 - 2*qy2 - 2*qz2 2*qx*qy - 2*qz*qw 2*qx*qz + 2*qy*qw
            2*qx*qy + 2*qz*qw 1 - 2*qx2 - 2*qz2 2*qy*qz - 2*qx*qw
            2*qx*qz - 2*qy*qw 2*qy*qz + 2*qx*qw 1 - 2*qx2 - 2*qy2

            so substituting the quaternion results above into the matrix we get:

            1 - 2*(v1 x v2).y2 - 2*(v1 x v2).z2 2*(v1 x v2).x*(v1 x v2).y - 2*(v1 x v2).z*(1 + v1•v2) 2*(v1 x v2).x*(v1 x v2).z + 2*(v1 x v2).y*(1 + v1•v2)
            2*(v1 x v2).x*(v1 x v2).y + 2*(v1 x v2).z*(1 + v1•v2) 1 - 2*(v1 x v2).x2 - 2*(v1 x v2).z2 2*(v1 x v2).y*(v1 x v2).z - 2*(v1 x v2).x*(1 + v1•v2)
            2*(v1 x v2).x*(v1 x v2).z - 2*(v1 x v2).y*(1 + v1•v2) 2*(v1 x v2).y*(v1 x v2).z + 2*(v1 x v2).x*(1 + v1•v2) 1 - 2*(v1 x v2).x2 - 2*(v1 x v2).y2

            Substituting the following expansions:

            (v1 x v2).x = v1.y * v2.z - v2.y * v1.z
            (v1 x v2).y = v1.z * v2.x - v2.z * v1.x
            (v1 x v2).z = v1.x * v2.y - v2.x * v1.y
            (v1 x v2).x2 = v1.y * v2.z * v1.y * v2.z + v2.y * v1.z * v2.y * v1.z - 2 * v2.y * v1.z * v1.y * v2.z
            (v1 x v2).y2 = v1.z * v2.x * v1.z * v2.x + v2.z * v1.x * v2.z * v1.x - 2* v2.z * v1.x * v1.z * v2.x
            (v1 x v2).z2 = v1.x * v2.y * v1.x * v2.y +v2.x * v1.y * v2.x * v1.y - 2 * v2.x * v1.y * v1.x * v2.y
            v1•v2 = v1.x * v2.x + v1.y * v2.y + v1.z * v2.z

            This is getting far too complicated ! can anyone help me simplify this?

            Thank you again to minorlogic who gave me the following solution:

            Hi !
            and i think can help in matrix version.

            you can use :
            http://www.euclideanspace.com/maths/geometry/rotations/conversions/angleToMatrix/index.htm

            And will get some thing :

            matrix33 RotAngonst vector3& from, const vector3& to )
            {
            from.norm();
            to.norm();

            vector3 vs = cross(from, to); // axis multiplied by sin

            vector3 v(vs);
            v.norm(); // axis of rotation
            float ca = dot(from, to) ; // cos angle

            vector3 vt(v*(1.0f - ca));

            matrix33 rotM;
            rotM.M11 = vt.x * v.x + ca;
            rotM.M22 = vt.y * v.y + ca;
            rotM.M33 = vt.z * v.z + ca;

            vt.x *= v.y;
            vt.z *= v.x;
            vt.y *= v.z;

            rotM.M12 = vt.x - vs.z;
            rotM.M13 = vt.z + vs.y;
            rotM.M21 = vt.x + vs.z;
            rotM.M23 = vt.y - vs.x;
            rotM.M31 = vt.z - vs.y;
            rotM.M32 = vt.y + vs.x;
            return rotM;
            }

            Code

            axis-angle version
            sfrotation angleBetween(sfvec3f v1,sfvec3f v2) {
            float angle;
            // turn vectors into unit vectors
            n1 = v1.norm();
            n2 = v2.norm();
            angle = Math.acos( sfvec3f.dot(n1,n2) );
            // if no noticable rotation is available return zero rotation
            // this way we avoid Cross product artifacts
            if( Math.abs(angle) < 0.0001 ) return new sfrotation( 0, 0, 1, 0 );
            // in this case there are 2 lines on the same axis
            if(Math.abs(angle)-Math.pi) < 0.001){
            n1 = n1.Rotx( 0.5f );
            // there are an infinite number of normals
            // in this case. Anyone of these normals will be
            // a valid rotation (180 degrees). so I rotate the curr axis by 0.5 radians this way we get one of these normals
            }
            sfvec3f axis = n1;
            axis.cross(n2);
            return new sfrotation(axis.x,axis.y,axis.z,angle);
            }
            
            quaternion version
            /** note v1 and v2 dont have to be nomalised, thanks to minorlogic for telling me about this:
            * http://www.euclideanspace.com/maths/algebra/vectors/angleBetween/minorlogic.htm
            */
            sfquat angleBetween(sfvec3f v1,sfvec3f v2) {
            float d = sfvec3f.dot(v1,v2);
            sfvec3f axis = v1;
            axis.cross(v2);
            float qw = (float)Math.sqrt(v1.len_squared()*v2.len_squared()) + d;
            if (qw < 0.0001) { // vectors are 180 degrees apart
            return (new sfquat(0,-v1.z,v1.y,v1.x)).norm;
            }
            sfquat q= new sfquat(qw,axis.x,axis.y,axis.z);
            return q.norm();
            }
            

            matrix version

            sfmatrix angleBetween(sfvec3f v1,sfvec3f v2) {
            // turn vectors into unit vectors
            n1 = v1.norm();
            n2 = v2.norm(); 	sfvec3f vs = new sfvec3f(n1);
            vs.cross(n2); // axis multiplied by sin	sfvec3f v = new sfvec3f(vs);
            v = v.norm(); // axis of rotation
            float ca = dot(n1, n2) ; // cos angle	sfvec3f vt = new sfvec3f(v);	vt.scale((1.0f - ca);	sfmatrix rotM = new sfmatrix();
            rotM.m11 = vt.x * v.x + ca;
            rotM.m22 = vt.y * v.y + ca;
            rotM.m33 = vt.z * v.z + ca;	vt.x *= v.y;
            vt.z *= v.x;
            vt.y *= v.z;	rotM.m12 = vt.x - vs.z;
            rotM.m13 = vt.z + vs.y;
            rotM.m21 = vt.x + vs.z;
            rotM.m23 = vt.y - vs.x;
            rotM.m31 = vt.z - vs.y;
            rotM.m32 = vt.y + vs.x;
            return rotM;
            }

            see also code from minorlogic

            posted on 2009-05-31 13:50 zmj 閱讀(1577) 評論(0)  編輯 收藏 引用

            久久精品国产一区二区三区不卡| 精品国产VA久久久久久久冰| 精品久久久久国产免费| 欧美精品一区二区久久| 久久精品国产2020| 久久99国产精品一区二区| 久久久久久久亚洲精品| 亚洲国产精品无码久久久秋霞2| 久久精品国产精品青草app| 四虎久久影院| 9191精品国产免费久久| 99久久国产宗和精品1上映| 狠狠久久综合伊人不卡| 人妻少妇久久中文字幕一区二区| 九九热久久免费视频| 久久精品国产亚洲av影院| 久久久久久A亚洲欧洲AV冫| 久久99久久99小草精品免视看| 久久午夜综合久久| 国产 亚洲 欧美 另类 久久| 久久精品国产99久久无毒不卡| 久久婷婷午色综合夜啪| 丁香久久婷婷国产午夜视频| 国产午夜福利精品久久2021 | 国产一级持黄大片99久久| 亚洲欧美日韩久久精品| 精品久久久久久无码人妻热 | 久久久久av无码免费网| 久久精品成人免费观看97| 精品久久久久久久无码| 欧美喷潮久久久XXXXx| 日韩欧美亚洲综合久久| 国产一区二区久久久| 欧美久久久久久精选9999| 久久高潮一级毛片免费| 99久久综合国产精品二区| 亚洲午夜久久久精品影院| 久久青草国产手机看片福利盒子 | 久久久一本精品99久久精品88| 国产一区二区精品久久岳| 国产A级毛片久久久精品毛片|