• <ins id="pjuwb"></ins>
    <blockquote id="pjuwb"><pre id="pjuwb"></pre></blockquote>
    <noscript id="pjuwb"></noscript>
          <sup id="pjuwb"><pre id="pjuwb"></pre></sup>
            <dd id="pjuwb"></dd>
            <abbr id="pjuwb"></abbr>

            Maths - Angle between vectors

            LINK: http://www.euclideanspace.com/maths/algebra/vectors/angleBetween/index.htm

            How do we calculate the angle between two vectors?

            For 2D Vectors

            This is relatively simple because there is only one degree of freedom for 2D rotations. If v1 and v2 are normalised so that |v1|=|v2|=1, then,

            angle = acos(v1•v2)

            where:

            • • = 'dot' product (see box on right of page).
            • acos = arc cos = inverse of cosine function see trigonometry page.
            • |v1|= magnitude of v1.

            The only problem is, this won't give all possible values between 0° and 360°, or -180° and +180°. In other words, it won't tell us if v1 is ahead or behind v2, to go from v1 to v2 is the opposite direction from v2 to v1.

            In most math libraries acos will usually return a value between 0 and PI (in radians) which is 0° and 180°.

            If we want a + or - value to indicate which vector is ahead, then we probably need to use the atan2 function (as explained on this page). using:

            angle of 2 relative to 1= atan2(v2.y,v2.x) - atan2(v1.y,v1.x)

            For 3D Vectors

            Axis Angle Result

            This is easiest to calculate using axis-angle representation because:

            • the angle is given by acos of the dot product of the two (normalised) vectors: v1•v2 = |v1||v2| cos(angle)
            • the axis is given by the cross product of the two vectors, the length of this axis is given by |v1 x v2| = |v1||v2| sin(angle).

            as explained here

            this is taken from this discussion.

            So, if v1 and v2 are normalised so that |v1|=|v2|=1, then,

            angle = acos(v1•v2)

            axis = norm(v1 x v2)

            If the vectors are parallel (angle = 0 or 180 degrees) then the length of v1 x v2 will be zero because sin(0)=sin(180)=0. In the zero case the axis does not matter and can be anything because there is no rotation round it. In the 180 degree case the axis can be anything at 90 degrees to the vectors so there is a whole range of possible axies.

            angle (degrees) sin(angle) cos(angle) v1•v2 v1 x v2
            0 0 1 1 0,0,0
            90 1 0 0 unit len
            180 0 -1 -1 0,0,0
            270 -1 0 0 unit len

            Quaternion Result

            One approach might be to define a quaternion which, when multiplied by a vector, rotates it:

            p2=q * p1

            This almost works as explained on this page.

            However, to rotate a vector, we must use this formula:

            p2=q * p1 * conj(q)

            where:

            • p2 = is a vector representing a point after being rotated
            • q = is a quaternion representing a rotation.
            • p1= is a vector representing a point before being rotated

            This is a bit messy to solve for q, I am therefore grateful to minorlogic for the following approach which converts the axis angle result to a quaternion:

            The axis angle can be converted to a quaternion as follows, let x,y,z,w be elements of quaternion, these can be expressed in terms of axis angle as explained here.

            angle = arcos(v1•v2/ |v1||v2|)
            axis = norm(v1 x v2)
            s = sin(angle/2)
            x = axis.x *s
            y = axis.y *s
            z = axis.z *s
            w = cos(angle/2)

            We can use this half angle trig formula on this page: sin(angle/2) = 0.5 sin(angle) / cos(angle/2)

            so substituting in quaternion formula gives:
            s = 0.5 sin(angle) / cos(angle/2)
            x = norm(v1 x v2).x *s
            y = norm(v1 x v2).y *s
            z = norm(v1 x v2).z *s
            w = cos(angle/2)

            multiply x,y,z and w by 2* cos(angle/2) (this will de normalise the quaternion but we can always normalise later)

            x = norm(v1 x v2).x * sin(angle)
            y = norm(v1 x v2).y * sin(angle)
            z = norm(v1 x v2).z * sin(angle)
            w = 2 * cos(angle/2) * cos(angle/2)

            now substitute half angle trig formula on this page: cos(angle/2) = sqrt(0.5*(1 + cos (angle)))

            x = norm(v1 x v2).x * sin(angle)
            y = norm(v1 x v2).y * sin(angle)
            z = norm(v1 x v2).z * sin(angle)
            w = 1 + cos (angle)

            because |v1 x v2| = |v1||v2| sin(angle) we can normalise (v1 x v2) by dividing it with sin(angle),

            also apply v1•v2 = |v1||v2| cos(angle)so,

            x = (v1 x v2).x / |v1||v2|
            y = (v1 x v2).y/ |v1||v2|
            z = (v1 x v2).z/ |v1||v2|
            w = 1 + v1•v2 / |v1||v2|

            If v1 and v2 are already normalised then |v1||v2|=1 so,

            x = (v1 x v2).x
            y = (v1 x v2).y
            z = (v1 x v2).z
            w = 1 + v1•v2

            If v1 and v2 are not already normalised then multiply by |v1||v2| gives:

            x = (v1 x v2).x
            y = (v1 x v2).y
            z = (v1 x v2).z
            w = |v1||v2| + v1•v2

            Matrix Result

            Using the quaternion to matrix conversion here we get:

            1 - 2*qy2 - 2*qz2 2*qx*qy - 2*qz*qw 2*qx*qz + 2*qy*qw
            2*qx*qy + 2*qz*qw 1 - 2*qx2 - 2*qz2 2*qy*qz - 2*qx*qw
            2*qx*qz - 2*qy*qw 2*qy*qz + 2*qx*qw 1 - 2*qx2 - 2*qy2

            so substituting the quaternion results above into the matrix we get:

            1 - 2*(v1 x v2).y2 - 2*(v1 x v2).z2 2*(v1 x v2).x*(v1 x v2).y - 2*(v1 x v2).z*(1 + v1•v2) 2*(v1 x v2).x*(v1 x v2).z + 2*(v1 x v2).y*(1 + v1•v2)
            2*(v1 x v2).x*(v1 x v2).y + 2*(v1 x v2).z*(1 + v1•v2) 1 - 2*(v1 x v2).x2 - 2*(v1 x v2).z2 2*(v1 x v2).y*(v1 x v2).z - 2*(v1 x v2).x*(1 + v1•v2)
            2*(v1 x v2).x*(v1 x v2).z - 2*(v1 x v2).y*(1 + v1•v2) 2*(v1 x v2).y*(v1 x v2).z + 2*(v1 x v2).x*(1 + v1•v2) 1 - 2*(v1 x v2).x2 - 2*(v1 x v2).y2

            Substituting the following expansions:

            (v1 x v2).x = v1.y * v2.z - v2.y * v1.z
            (v1 x v2).y = v1.z * v2.x - v2.z * v1.x
            (v1 x v2).z = v1.x * v2.y - v2.x * v1.y
            (v1 x v2).x2 = v1.y * v2.z * v1.y * v2.z + v2.y * v1.z * v2.y * v1.z - 2 * v2.y * v1.z * v1.y * v2.z
            (v1 x v2).y2 = v1.z * v2.x * v1.z * v2.x + v2.z * v1.x * v2.z * v1.x - 2* v2.z * v1.x * v1.z * v2.x
            (v1 x v2).z2 = v1.x * v2.y * v1.x * v2.y +v2.x * v1.y * v2.x * v1.y - 2 * v2.x * v1.y * v1.x * v2.y
            v1•v2 = v1.x * v2.x + v1.y * v2.y + v1.z * v2.z

            This is getting far too complicated ! can anyone help me simplify this?

            Thank you again to minorlogic who gave me the following solution:

            Hi !
            and i think can help in matrix version.

            you can use :
            http://www.euclideanspace.com/maths/geometry/rotations/conversions/angleToMatrix/index.htm

            And will get some thing :

            matrix33 RotAngonst vector3& from, const vector3& to )
            {
            from.norm();
            to.norm();

            vector3 vs = cross(from, to); // axis multiplied by sin

            vector3 v(vs);
            v.norm(); // axis of rotation
            float ca = dot(from, to) ; // cos angle

            vector3 vt(v*(1.0f - ca));

            matrix33 rotM;
            rotM.M11 = vt.x * v.x + ca;
            rotM.M22 = vt.y * v.y + ca;
            rotM.M33 = vt.z * v.z + ca;

            vt.x *= v.y;
            vt.z *= v.x;
            vt.y *= v.z;

            rotM.M12 = vt.x - vs.z;
            rotM.M13 = vt.z + vs.y;
            rotM.M21 = vt.x + vs.z;
            rotM.M23 = vt.y - vs.x;
            rotM.M31 = vt.z - vs.y;
            rotM.M32 = vt.y + vs.x;
            return rotM;
            }

            Code

            axis-angle version
            sfrotation angleBetween(sfvec3f v1,sfvec3f v2) {
            float angle;
            // turn vectors into unit vectors
            n1 = v1.norm();
            n2 = v2.norm();
            angle = Math.acos( sfvec3f.dot(n1,n2) );
            // if no noticable rotation is available return zero rotation
            // this way we avoid Cross product artifacts
            if( Math.abs(angle) < 0.0001 ) return new sfrotation( 0, 0, 1, 0 );
            // in this case there are 2 lines on the same axis
            if(Math.abs(angle)-Math.pi) < 0.001){
            n1 = n1.Rotx( 0.5f );
            // there are an infinite number of normals
            // in this case. Anyone of these normals will be
            // a valid rotation (180 degrees). so I rotate the curr axis by 0.5 radians this way we get one of these normals
            }
            sfvec3f axis = n1;
            axis.cross(n2);
            return new sfrotation(axis.x,axis.y,axis.z,angle);
            }
            
            quaternion version
            /** note v1 and v2 dont have to be nomalised, thanks to minorlogic for telling me about this:
            * http://www.euclideanspace.com/maths/algebra/vectors/angleBetween/minorlogic.htm
            */
            sfquat angleBetween(sfvec3f v1,sfvec3f v2) {
            float d = sfvec3f.dot(v1,v2);
            sfvec3f axis = v1;
            axis.cross(v2);
            float qw = (float)Math.sqrt(v1.len_squared()*v2.len_squared()) + d;
            if (qw < 0.0001) { // vectors are 180 degrees apart
            return (new sfquat(0,-v1.z,v1.y,v1.x)).norm;
            }
            sfquat q= new sfquat(qw,axis.x,axis.y,axis.z);
            return q.norm();
            }
            

            matrix version

            sfmatrix angleBetween(sfvec3f v1,sfvec3f v2) {
            // turn vectors into unit vectors
            n1 = v1.norm();
            n2 = v2.norm(); 	sfvec3f vs = new sfvec3f(n1);
            vs.cross(n2); // axis multiplied by sin	sfvec3f v = new sfvec3f(vs);
            v = v.norm(); // axis of rotation
            float ca = dot(n1, n2) ; // cos angle	sfvec3f vt = new sfvec3f(v);	vt.scale((1.0f - ca);	sfmatrix rotM = new sfmatrix();
            rotM.m11 = vt.x * v.x + ca;
            rotM.m22 = vt.y * v.y + ca;
            rotM.m33 = vt.z * v.z + ca;	vt.x *= v.y;
            vt.z *= v.x;
            vt.y *= v.z;	rotM.m12 = vt.x - vs.z;
            rotM.m13 = vt.z + vs.y;
            rotM.m21 = vt.x + vs.z;
            rotM.m23 = vt.y - vs.x;
            rotM.m31 = vt.z - vs.y;
            rotM.m32 = vt.y + vs.x;
            return rotM;
            }

            see also code from minorlogic

            posted on 2009-05-31 13:50 zmj 閱讀(1583) 評論(0)  編輯 收藏 引用

            伊人久久一区二区三区无码| 99久久久国产精品免费无卡顿 | 久久免费国产精品一区二区| 久久久噜噜噜久久中文福利| 麻豆AV一区二区三区久久| 久久国产精品99精品国产| 97久久精品人妻人人搡人人玩| 成人精品一区二区久久| 精品久久久无码人妻中文字幕| A狠狠久久蜜臀婷色中文网| 久久久久久国产精品美女| 久久人人爽人人爽人人爽| 久久99精品久久久久久hb无码| segui久久国产精品| 久久AV高潮AV无码AV| 国产AⅤ精品一区二区三区久久| 三级三级久久三级久久| 成人亚洲欧美久久久久| 久久精品麻豆日日躁夜夜躁| 精品国产日韩久久亚洲| 国产精品免费久久久久久久久 | 久久精品国产亚洲AV久| 欧美伊香蕉久久综合类网站| 久久久亚洲裙底偷窥综合 | 久久亚洲高清综合| 久久97精品久久久久久久不卡| 久久精品国产久精国产果冻传媒| 久久亚洲欧美日本精品| 国产午夜福利精品久久2021| 99精品久久久久久久婷婷| 欧美午夜A∨大片久久| AA级片免费看视频久久| 国产精品99久久精品爆乳| 久久国产乱子伦精品免费强| 99精品久久精品一区二区| 久久精品人人做人人爽97| 欧美丰满熟妇BBB久久久| 亚洲精品tv久久久久久久久 | 久久综合给合久久国产免费| 婷婷五月深深久久精品| 人妻无码αv中文字幕久久 |