青青草原综合久久大伊人导航_色综合久久天天综合_日日噜噜夜夜狠狠久久丁香五月_热久久这里只有精品

計算機圖形學幾何工具算法詳解(英文目錄)

?www.mkp.com/gtcg
Geometric Tools for Computer Graphics
Philip Schneider
Industrial Light + Magic, San Francisco, California, U.S.A.
David H. Eberly
Geometric Tools, Inc., Chapel Hill, North Carolina, U.S.A.

Features & Benefits

?


  • Filled with robust, thoroughly tested solutions that will save you time and help you avoid costly errors.
  • Covers problems relevant for both 2D and 3D graphics programming.
  • Presents each problem and solution in stand-alone form allowing you the option of reading only those entries that matter to you.
  • Provides the math and geometry background you need to understand the solutions and put them to work.
  • Clearly diagrams each problem and presents solutions in easy-to-understand pseudocode.
  • Resources associated with the book are available at the companion Web site www.mkp.com/gtcg.

Reviews


"An hour of a programmer's time often costs more than the price of a book. By this measure, you hold a volume potentially worth thousands of dollars. That it can be purchased for a fraction of this cost I consider a modern miracle. The amount of information crammed into this book is incredible." --Eric Haines

Description

?back to top



Do you spend too much time creating the building blocks of your graphics applications or finding and correcting errors? Geometric Tools for Computer Graphics is an extensive, conveniently organized collection of proven solutions to fundamental problems that you'd rather not solve over and over again, including building primitives, distance calculation, approximation, containment, decomposition, intersection determination, separation, and more.


If you have a mathematics degree, this book will save you time and trouble. If you don't, it will help you achieve things you may feel are out of your reach. Inside, each problem is clearly stated and diagrammed, and the fully detailed solutions are presented in easy-to-understand pseudocode. You also get the mathematics and geometry background needed to make optimal use of the solutions, as well as an abundance of reference material contained in a series of appendices.

Contents

?back to top


Foreword
Figures
Tables
Preface

Chapter 1 Introduction
1.1 How to Use This Book
1.2 Issues of Numerical Computation
1.2.1 Low-Level Issues
1.2.2 High-Level Issues
1.3 A Summary of the Chapters

Chapter 2 Matrices and Linear Systems
2.1 Introduction
2.1.1 Motivation
2.1.2 Organization
2.1.3 Notational Conventions
2.2 Tuples
2.2.1 Definition
2.2.2 Arithmetic Operations
2.3 Matrices
2.3.1 Notation and Terminology
2.3.2 Transposition
2.3.3 Arithmetic Operations
2.3.4 Matrix Multiplication
2.4 Linear Systems
2.4.1 Linear Equations
2.4.2 Linear Systems in Two Unknowns
2.4.3 General Linear Systems
2.4.4 Row Reductions, Echelon Form, and Rank
2.5 Square Matrices
2.5.1 Diagonal Matrices
2.5.2 Triangular Matrices
2.5.3 The Determinant
2.5.4 Inverse
2.6 Linear Spaces
2.6.1 Fields
2.6.2 Definition and Properties
2.6.3 Subspaces
2.6.4 Linear Combinations and Span
2.6.5 Linear Independence, Dimension, and Basis
2.7 Linear Mappings
2.7.1 Mappings in General
2.7.2 Linear Mappings
2.7.3 Matrix Representation of Linear Mappings
2.7.4 Cramer’s Rule
2.8 Eigenvalues and Eigenvectors
2.9 Euclidean Space
2.9.1 Inner Product Spaces
2.9.2 Orthogonality and Orthonormal Sets
2.10 Least Squares
Recommended Reading

Chapter 3 Vector Algebra
3.1 Vector Basics
3.1.1 Vector Equivalence
3.1.2 Vector Addition
3.1.3 Vector Subtraction
3.1.4 Vector Scaling
3.1.5 Properties of Vector Addition and Scalar Multiplication
3.2 Vector Space
3.2.1 Span
3.2.2 Linear Independence
3.2.3 Basis, Subspaces, and Dimension
3.2.4 Orientation
3.2.5 Change of Basis
3.2.6 Linear Transformations
3.3 Affine Spaces
3.3.1 Euclidean Geometry
3.3.2 Volume, the Determinant, and the Scalar Triple Product
3.3.3 Frames
3.4 Affine Transformations
3.4.1 Types of Affine Maps
3.4.2 Composition of Affine Maps
3.5 Barycentric Coordinates and Simplexes
3.5.1 Barycentric Coordinates and Subspaces
3.5.2 Affine Independence

Chapter 4 Matrices, Vector Algebra, and Transformations
4.1 Introduction
4.2 Matrix Representation of Points and Vectors
4.3 Addition, Subtraction, and Multiplication
4.3.1 Vector Addition and Subtraction
4.3.2 Point and Vector Addition and Subtraction
4.3.3 Subtraction of Points
4.3.4 Scalar Multiplication
4.4 Products of Vectors
4.4.1 Dot Product
4.4.2 Cross Product
4.4.3 Tensor Product
4.4.4 The “Perp” Operator and the “Perp” Dot Product
4.5 Matrix Representation of Affine Transformations
4.6 Change-of-Basis/Frame/Coordinate System
4.7 Vector Geometry of Affine Transformations
4.7.1 Notation
4.7.2 Translation
4.7.3 Rotation
4.7.4 Scaling
4.7.5 Reflection
4.7.6 Shearing
4.8 Projections
4.8.1 Orthographic
4.8.2 Oblique
4.8.3 Perspective
4.9 Transforming Normal Vectors
Recommended Reading

Chapter 5 Geometric Primitives in 2D
5.1 Linear Components
5.1.1 Implicit Form
5.1.2 Parametric Form
5.1.3 Converting between Representations
5.2 Triangles
5.3 Rectangles
5.4 Polylines and Polygons
5.5 Quadratic Curves
5.5.1 Circles
5.5.2 Ellipses
5.6 Polynomial Curves
5.6.1 B′ezier Curves
5.6.2 B-Spline Curves
5.6.3 NURBS Curves

Chapter 6 Distance in 2D
6.1 Point to Linear Component
6.1.1 Point to Line
6.1.2 Point to Ray
6.1.3 Point to Segment
6.2 Point to Polyline
6.3 Point to Polygon
6.3.1 Point to Triangle
6.3.2 Point to Rectangle
6.3.3 Point to Orthogonal Frustum
6.3.4 Point to Convex Polygon
6.4 Point to Quadratic Curve
6.5 Point to Polynomial Curve
6.6 Linear Components
6.6.1 Line to Line
6.6.2 Line to Ray
6.6.3 Line to Segment
6.6.4 Ray to Ray
6.6.5 Ray to Segment
6.6.6 Segment to Segment
6.7 Linear Component to Polyline or Polygon
6.8 Linear Component to Quadratic Curve
6.9 Linear Component to Polynomial Curve
6.10 GJK Algorithm
6.10.1 Set Operations
6.10.2 Overview of the Algorithm
6.10.3 Alternatives to GJK

Chapter 7 Intersection in 2D
7.1 Linear Components
7.2 Linear Components and Polylines
7.3 Linear Components and Quadratic Curves
7.3.1 Linear Components and General Quadratic Curves
7.3.2 Linear Components and Circular Components
7.4 Linear Components and Polynomial Curves
7.4.1 Algebraic Method
7.4.2 Polyline Approximation
7.4.3 Hierarchical Bounding
7.4.4 Monotone Decomposition
7.4.5 Rasterization
7.5 Quadratic Curves
7.5.1 General Quadratic Curves
7.5.2 Circular Components
7.5.3 Ellipses
7.6 Polynomial Curves
7.6.1 Algebraic Method
7.6.2 Polyline Approximation
7.6.3 Hierarchical Bounding
7.6.4 Rasterization
7.7 The Method of Separating Axes
7.7.1 Separation by Projection onto a Line
7.7.2 Separation of Stationary Convex Polygons
7.7.3 Separation of Moving Convex Polygons
7.7.4 Intersection Set for Stationary Convex Polygons
7.7.5 Contact Set for Moving Convex Polygons

Chapter 8 Miscellaneous 2D Problems
8.1 Circle through Three Points
8.2 Circle Tangent to Three Lines
8.3 Line Tangent to a Circle at a Given Point
8.4 Line Tangent to a Circle through a Given Point
8.5 Lines Tangent to Two Circles
8.6 Circle through Two Points with a Given Radius
8.7 Circle through a Point and Tangent to a Line with a Given Radius
8.8 Circles Tangent to Two Lines with a Given Radius
8.9 Circles through a Point and Tangent to a Circle with a Given Radius
8.10 Circles Tangent to a Line and a Circle with a Given Radius
8.11 Circles Tangent to Two Circles with a Given Radius
8.12 Line Perpendicular to a Given Line through a Given Point
8.13 Line between and Equidistant to Two Points
8.14 Line Parallel to a Given Line at a Given Distance
8.15 Line Parallel to a Given Line at a Given Vertical (Horizontal) Distance
8.16 Lines Tangent to a Given Circle and Normal to a Given Line

Chapter 9 Geometric Primitives in 3D
9.1 Linear Components
9.2 Planar Components
9.2.1 Planes
9.2.2 Coordinate System Relative to a Plane
9.2.3 2D Objects in a Plane
9.3 Polymeshes, Polyhedra, and Polytopes
9.3.1 Vertex-Edge-Face Tables
9.3.2 Connected Meshes
9.3.3 Manifold Meshes
9.3.4 Closed Meshes
9.3.5 Consistent Ordering
9.3.6 Platonic Solids
9.4 Quadric Surfaces
9.4.1 Three Nonzero Eigenvalues
9.4.2 Two Nonzero Eigenvalues
9.4.3 One Nonzero Eigenvalue
9.5 Torus
9.6 Polynomial Curves
9.6.1 Bézier Curves
9.6.2 B-Spline Curves
9.6.3 NURBS Curves
9.7 Polynomial Surfaces
9.7.1 Bézier Surfaces
9.7.2 B-Spline Surfaces
9.7.3 NURBS Surfaces

Chapter 10 Distance in 3D
10.1 Introduction
10.2 Point to Linear Component
10.2.1 Point to Ray or Line Segment
10.2.2 Point to Polyline
10.3 Point to Planar Component
10.3.1 Point to Plane
10.3.2 Point to Triangle
10.3.3 Point to Rectangle
10.3.4 Point to Polygon
10.3.5 Point to Circle or Disk
10.4 Point to Polyhedron
10.4.1 General Problem
10.4.2 Point to Oriented Bounding Box
10.4.3 Point to Orthogonal Frustum
10.5 Point to Quadric Surface
10.5.1 Point to General Quadric Surface
10.5.2 Point to Ellipsoid
10.6 Point to Polynomial Curve
10.7 Point to Polynomial Surface
10.8 Linear Components
10.8.1 Lines and Lines
10.8.2 Segment/Segment, Line/Ray, Line/Segment, Ray/Ray, Ray/Segment
10.8.3 Segment to Segment, Alternative Approach
10.9 Linear Component to Triangle, Rectangle, Tetrahedron, Oriented Box
10.9.1 Linear Component to Triangle
10.9.2 Linear Component to Rectangle
10.9.3 Linear Component to Tetrahedron
10.9.4 Linear Component to Oriented Bounding Box
10.10 Line to Quadric Surface
10.11 Line to Polynomial Surface
10.12 GJK Algorithm
10.13 Miscellaneous
10.13.1 Distance between Line and Planar Curve
10.13.2 Distance between Line and Planar Solid Object
10.13.3 Distance between Planar Curves
10.13.4 Geodesic Distance on Surfaces

Chapter 11 Intersection in 3D
11.1 Linear Components and Planar Components
11.1.1 Linear Components and Planes
11.1.2 Linear Components and Triangles
11.1.3 Linear Components and Polygons
11.1.4 Linear Component and Disk
11.2 Linear Components and Polyhedra
11.3 Linear Components and Quadric Surfaces
11.3.1 General Quadric Surfaces
11.3.2 Linear Components and a Sphere
11.3.3 Linear Components and an Ellipsoid
11.3.4 Linear Components and Cylinders
11.3.5 Linear Components and a Cone
11.4 Linear Components and Polynomial Surfaces
11.4.1 Algebraic Surfaces
11.4.2 Free-Form Surfaces
11.5 Planar Components
11.5.1 Two Planes
11.5.2 Three Planes
11.5.3 Triangle and Plane
11.5.4 Triangle and Triangle
11.6 Planar Components and Polyhedra
11.6.1 Trimeshes
11.6.2 General Polyhedra
11.7 Planar Components and Quadric Surface
11.7.1 Plane and General Quadric Surface
11.7.2 Plane and Sphere
11.7.3 Plane and Cylinder
11.7.4 Plane and Cone
11.7.5 Triangle and Cone
11.8 Planar Components and Polynomial Surfaces
11.8.1 Hermite Curves
11.8.2 Geometry Definitions
11.8.3 Computing the Curves
11.8.4 The Algorithm
11.8.5 Implementation Notes
11.9 Quadric Surfaces
11.9.1 General Intersection
11.9.2 Ellipsoids
11.10 Polynomial Surfaces
11.10.1 Subdivision Methods
11.10.2 Lattice Evaluation
11.10.3 Analytic Methods
11.10.4 Marching Methods
11.11 The Method of Separating Axes
11.11.1 Separation of Stationary Convex Polyhedra
11.11.2 Separation of Moving Convex Polyhedra
11.11.3 Intersection Set for Stationary Convex Polyhedra
11.11.4 Contact Set for Moving Convex Polyhedra
11.12 Miscellaneous
11.12.1 Oriented Bounding Box and Orthogonal Frustum
11.12.2 Linear Component and Axis-Aligned Bounding Box
11.12.3 Linear Component and Oriented Bounding Box
11.12.4 Plane and Axis-Aligned Bounding Box
11.12.5 Plane and Oriented Bounding Box
11.12.6 Axis-Aligned Bounding Boxes
11.12.7 Oriented Bounding Boxes
11.12.8 Sphere and Axis-Aligned Bounding Box
11.12.9 Cylinders
11.12.10 Linear Component and Torus

Chapter 12 Miscellaneous 3D Problems
12.1 Projection of a Point onto a Plane
12.2 Projection of a Vector onto a Plane
12.3 Angle between a Line and a Plane
12.4 Angle between Two Planes
12.5 Plane Normal to a Line and through a Given Point
12.6 Plane through Three Points
12.7 Angle between Two Lines

Chapter 13 Computational Geometry Topics
13.1 Binary Space-Partitioning Trees in 2D
13.1.1 BSP Tree Representation of a Polygon
13.1.2 Minimum Splits versus Balanced Trees
13.1.3 Point in Polygon Using BSP Trees
13.1.4 Partitioning a Line Segment by a BSP Tree
13.2 Binary Space-Partitioning Trees in 3D
13.2.1 BSP Tree Representation of a Polyhedron
13.2.2 Minimum Splits versus Balanced Trees
13.2.3 Point in Polyhedron Using BSP Trees
13.2.4 Partitioning a Line Segment by a BSP Tree
13.2.5 Partitioning a Convex Polygon by a BSP Tree
13.3 Point in Polygon
13.3.1 Point in Triangle
13.3.2 Point in Convex Polygon
13.3.3 Point in General Polygon
13.3.4 Faster Point in General Polygon
13.3.5 A Grid Method
13.4 Point in Polyhedron
13.4.1 Point in Tetrahedron
13.4.2 Point in Convex Polyhedron
13.4.3 Point in General Polyhedron
13.5 Boolean Operations on Polygons
13.5.1 The Abstract Operations
13.5.2 The Two Primitive Operations
13.5.3 Boolean Operations Using BSP Trees
13.5.4 Other Algorithms
13.6 Boolean Operations on Polyhedra
13.6.1 Abstract Operations
13.6.2 Boolean Operations Using BSP Trees
13.7 Convex Hulls
13.7.1 Convex Hulls in 2D
13.7.2 Convex Hulls in 3D
13.7.3 Convex Hulls in Higher Dimensions
13.8 Delaunay Triangulation
13.8.1 Incremental Construction in 2D
13.8.2 Incremental Construction in General Dimensions
13.8.3 Construction by Convex Hull
13.9 Polygon Partitioning
13.9.1 Visibility Graph of a Simple Polygon
13.9.2 Triangulation
13.9.3 Triangulation by Horizontal Decomposition
13.9.4 Convex Partitioning
13.10 Circumscribed and Inscribed Balls
13.10.1 Circumscribed Ball
13.10.2 Inscribed Ball
13.11 Minimum Bounds for Point Set
13.11.1 Minimum-Area Rectangle
13.11.2 Minimum-Volume Box
13.11.3 Minimum-Area Circle
13.11.4 Minimum-Volume Sphere
13.11.5 Miscellaneous
13.12 Area and Volume Measurements
13.12.1 Area of a 2D Polygon
13.12.2 Area of a 3D Polygon
13.12.3 Volume of a Polyhedron

Appendix A Numerical Methods
A.1 Solving Linear Systems
A.1.1 Special Case: Solving a Triangular System
A.1.2 Gaussian Elimination
A.2 Systems of Polynomials
A.2.1 Linear Equations in One Formal Variable
A.2.2 Any-Degree Equations in One Formal Variable
A.2.3 Any-Degree Equations in Any Formal Variables
A.3 Matrix Decompositions
A.3.1 Euler Angle Factorization
A.3.2 QR Decomposition
A.3.3 Eigendecomposition
A.3.4 Polar Decomposition
A.3.5 Singular Value Decomposition
A.4 Representations of 3D Rotations
A.4.1 Matrix Representation
A.4.2 Axis-Angle Representation
A.4.3 Quaternion Representation
A.4.4 Performance Issues
A.5 Root Finding
A.5.1 Methods in One Dimension
A.5.2 Methods in Many Dimensions
A.5.3 Stable Solution to Quadratic Equations
A.6 Minimization
A.6.1 Methods in One Dimension
A.6.2 Methods in Many Dimensions
A.6.3 Minimizing a Quadratic Form
A.6.4 Minimizing a Restricted Quadratic Form
A.7 Least Squares Fitting
A.7.1 Linear Fitting of Points (x, f (x))
A.7.2 Linear Fitting of Points Using Orthogonal Regression
A.7.3 Planar Fitting of Points (x, y, f (x, y))
A.7.4 Hyperplanar Fitting of Points Using Orthogonal Regression
A.7.5 Fitting a Circle to 2D Points
A.7.6 Fitting a Sphere to 3D Points
A.7.7 Fitting a Quadratic Curve to 2D Points
A.7.8 Fitting a Quadric Surface to 3D Points
A.8 Subdivision of Curves
A.8.1 Subdivision by Uniform Sampling
A.8.2 Subdivision by Arc Length
A.8.3 Subdivision by Midpoint Distance
A.8.4 Subdivision by Variation
A.9 Topics from Calculus
A.9.1 Level Sets
A.9.2 Minima and Maxima of Functions
A.9.3 Lagrange Multipliers

Appendix B Trigonometry
B.1 Introduction
B.1.1 Terminology
B.1.2 Angles
B.1.3 Conversion Examples
B.2 Trigonometric Functions
B.2.1 Definitions in Terms of Exponentials
B.2.2 Domains and Ranges
B.2.3 Graphs of Trigonometric Functions
B.2.4 Derivatives of Trigonometric Functions
B.2.5 Integration
B.3 Trigonometric Identities and Laws
B.3.1 Periodicity
B.3.2 Laws
B.3.3 Formulas
B.4 Inverse Trigonometric Functions
B.4.1 Defining arcsin and arccos in Terms of arctan
B.4.2 Domains and Ranges
B.4.3 Graphs
B.4.4 Derivatives
B.4.5 Integration
B.5 Further Reading

Appendix C Basic Formulas for Geometric Primitives
C.1 Introduction
C.2 Triangles
C.2.1 Symbols
C.2.2 Definitions
C.2.3 Right Triangles
C.2.4 Equilateral Triangle
C.2.5 General Triangle
C.3 Quadrilaterals
C.3.1 Square
C.3.2 Rectangle
C.3.3 Parallelogram
C.3.4 Rhombus
C.3.5 Trapezoid
C.3.6 General Quadrilateral
C.4 Circles
C.4.1 Symbols
C.4.2 Full Circle
C.4.3 Sector of a Circle
C.4.4 Segment of a Circle
C.5 Polyhedra
C.5.1 Symbols
C.5.2 Box
C.5.3 Prism
C.5.4 Pyramid
C.6 Cylinder
C.7 Cone
C.8 Spheres
C.8.1 Segments
C.8.2 Sector
C.9 Torus

References
Index
About the Authors

posted on 2006-11-26 17:59 zmj 閱讀(2381) 評論(1)  編輯 收藏 引用

評論

# re: 計算機圖形學幾何工具算法詳解(英文目錄) 2007-08-07 11:43 sunjunling

hao  回復  更多評論   


只有注冊用戶登錄后才能發表評論。
網站導航: 博客園   IT新聞   BlogJava   博問   Chat2DB   管理


青青草原综合久久大伊人导航_色综合久久天天综合_日日噜噜夜夜狠狠久久丁香五月_热久久这里只有精品
  • <ins id="pjuwb"></ins>
    <blockquote id="pjuwb"><pre id="pjuwb"></pre></blockquote>
    <noscript id="pjuwb"></noscript>
          <sup id="pjuwb"><pre id="pjuwb"></pre></sup>
            <dd id="pjuwb"></dd>
            <abbr id="pjuwb"></abbr>
            欧美高清视频一区二区| 日韩亚洲国产精品| 亚洲国产乱码最新视频| 亚洲第一在线视频| 亚洲精品国精品久久99热一 | 国产视频在线观看一区| 久久久久久久999| 国内外成人在线| 极品少妇一区二区三区精品视频| 有码中文亚洲精品| 亚洲日韩视频| 亚洲女人天堂成人av在线| 欧美一区二区播放| 蜜臀99久久精品久久久久久软件| 欧美国产日本韩| 一本色道久久| 久久精品欧美| 欧美日韩一区二区国产| 国产日韩欧美一区二区| 91久久久久久久久| 欧美一区二区性| 亚洲国产欧美久久| 一区二区成人精品| 久久天堂国产精品| 欧美视频中文字幕在线| 在线精品视频一区二区三四| 亚洲特色特黄| 免费成人在线观看视频| 亚洲中午字幕| 欧美日韩亚洲不卡| 亚洲国产一区二区视频| 久久久噜噜噜久久中文字免| 9l国产精品久久久久麻豆| 久久免费一区| 国产午夜精品久久| 亚洲伊人伊色伊影伊综合网| 亚洲第一色在线| 久久精品在线| 国产欧美欧洲在线观看| 亚洲一区在线播放| 亚洲人成网站999久久久综合| 久久超碰97人人做人人爱| 国产精品青草综合久久久久99| 9久草视频在线视频精品| 欧美成人国产一区二区| 久久久精品久久久久| 国产一在线精品一区在线观看| 亚洲欧美成人网| 一本不卡影院| 欧美日韩精品一区二区三区四区| 一区二区三区在线观看视频| 欧美中文字幕视频| 亚洲性线免费观看视频成熟| 欧美日韩精品免费观看| 夜夜嗨av一区二区三区四季av| 欧美国产先锋| 久久综合九九| 亚洲国产高潮在线观看| 久久中文在线| 久久久久99| 亚洲高清不卡一区| 欧美国产视频在线观看| 欧美va天堂| 99re这里只有精品6| 国产嫩草一区二区三区在线观看| 午夜精品久久久久久99热软件| 免费成人高清在线视频| 久久欧美肥婆一二区| 亚洲国产成人av| 亚洲激情偷拍| 国产精品v一区二区三区 | 在线播放日韩专区| 欧美xx视频| 欧美高清视频一区| 亚洲综合不卡| 亚洲欧美日韩综合国产aⅴ| 国产视频亚洲精品| 美女视频黄a大片欧美| 美女主播精品视频一二三四| 亚洲精品一区二| 一区二区三区日韩欧美| 国产视频一区在线观看一区免费| 久久亚洲欧洲| 欧美精品一区二区三区高清aⅴ| 亚洲专区欧美专区| 欧美综合第一页| 夜夜嗨av一区二区三区网站四季av| 亚洲视频axxx| 亚洲国产99| 亚洲免费精品| 精品二区视频| 亚洲午夜视频在线观看| 狠狠色丁香婷婷综合影院| 亚洲电影免费观看高清| 国产精品视频一| 欧美激情第一页xxx| 国产精品视频一二三| 欧美激情亚洲另类| 国产欧美日韩在线 | 久久精品国产视频| 一区二区精品| 久久午夜精品一区二区| 先锋亚洲精品| 欧美美女bbbb| 欧美xx视频| 韩国女主播一区| 在线视频一区观看| 亚洲人体1000| 欧美一区二区三区四区在线 | 国产午夜精品美女视频明星a级 | 久久成人国产| 午夜综合激情| 欧美日韩精品久久| 欧美国产精品v| 国产揄拍国内精品对白| 亚洲图片在区色| 一区二区三区导航| 欧美成人高清视频| 女女同性精品视频| 国内视频精品| 久久成人18免费网站| 久久九九国产| 国产深夜精品| 亚洲欧美中文日韩在线| 欧美日韩极品在线观看一区| 亚洲视频在线视频| 欧美精品观看| 亚洲国产一区二区三区在线播| 在线观看欧美日韩| 久久精品亚洲热| 久久久噜噜噜久久中文字幕色伊伊| 国产乱码精品1区2区3区| 日韩一级片网址| 日韩写真视频在线观看| 欧美α欧美αv大片| 欧美福利电影在线观看| 激情小说另类小说亚洲欧美 | 国内精品久久久久影院色 | 欧美午夜一区二区福利视频| 亚洲乱码久久| 亚洲一区二区三区久久 | 欧美日一区二区在线观看| 亚洲久久成人| 亚洲一区中文| 国产丝袜一区二区三区| 久久精品中文字幕免费mv| 牛牛国产精品| 一本色道久久| 国产欧美精品日韩区二区麻豆天美| 性欧美大战久久久久久久免费观看 | 牛人盗摄一区二区三区视频| 欧美激情一区二区三区蜜桃视频| 亚洲国产毛片完整版| 欧美激情精品久久久久久蜜臀| 亚洲国产精品一区制服丝袜 | 另类专区欧美制服同性| 在线播放豆国产99亚洲| 欧美波霸影院| 一本一本久久a久久精品牛牛影视| 亚洲欧美成人| 在线观看亚洲专区| 欧美日韩在线播放一区| 欧美亚洲一区二区在线| 麻豆freexxxx性91精品| 亚洲精品系列| 国产日韩欧美二区| 免费成人av在线| 亚洲欧美变态国产另类| 欧美成人一区二免费视频软件| 一本一本久久a久久精品综合妖精| 国产精品美女| 久久一区二区三区四区五区| 日韩一级欧洲| 免费欧美日韩| 欧美在线亚洲| 日韩一级大片| 黄色资源网久久资源365| 亚洲三级免费电影| 伊人久久av导航| 欧美日韩一区二区三区在线视频 | 欧美日韩国产页| 欧美在线资源| 一本色道久久综合狠狠躁篇的优点| 欧美中文字幕| 亚洲影院在线| 99国内精品久久久久久久软件| 激情丁香综合| 国产亚洲精品福利| 欧美系列亚洲系列| 欧美mv日韩mv亚洲| 久久国产精品第一页 | 欧美激情在线狂野欧美精品| 午夜亚洲精品| 亚洲小说欧美另类社区| 日韩亚洲欧美成人一区| 欧美高清不卡| 欧美成人国产一区二区| 久久综合影音| 麻豆av一区二区三区| 久久人人爽人人爽|