青青草原综合久久大伊人导航_色综合久久天天综合_日日噜噜夜夜狠狠久久丁香五月_热久久这里只有精品

計算機圖形學(xué)幾何工具算法詳解(英文目錄)

?www.mkp.com/gtcg
Geometric Tools for Computer Graphics
Philip Schneider
Industrial Light + Magic, San Francisco, California, U.S.A.
David H. Eberly
Geometric Tools, Inc., Chapel Hill, North Carolina, U.S.A.

Features & Benefits

?


  • Filled with robust, thoroughly tested solutions that will save you time and help you avoid costly errors.
  • Covers problems relevant for both 2D and 3D graphics programming.
  • Presents each problem and solution in stand-alone form allowing you the option of reading only those entries that matter to you.
  • Provides the math and geometry background you need to understand the solutions and put them to work.
  • Clearly diagrams each problem and presents solutions in easy-to-understand pseudocode.
  • Resources associated with the book are available at the companion Web site www.mkp.com/gtcg.

Reviews


"An hour of a programmer's time often costs more than the price of a book. By this measure, you hold a volume potentially worth thousands of dollars. That it can be purchased for a fraction of this cost I consider a modern miracle. The amount of information crammed into this book is incredible." --Eric Haines

Description

?back to top



Do you spend too much time creating the building blocks of your graphics applications or finding and correcting errors? Geometric Tools for Computer Graphics is an extensive, conveniently organized collection of proven solutions to fundamental problems that you'd rather not solve over and over again, including building primitives, distance calculation, approximation, containment, decomposition, intersection determination, separation, and more.


If you have a mathematics degree, this book will save you time and trouble. If you don't, it will help you achieve things you may feel are out of your reach. Inside, each problem is clearly stated and diagrammed, and the fully detailed solutions are presented in easy-to-understand pseudocode. You also get the mathematics and geometry background needed to make optimal use of the solutions, as well as an abundance of reference material contained in a series of appendices.

Contents

?back to top


Foreword
Figures
Tables
Preface

Chapter 1 Introduction
1.1 How to Use This Book
1.2 Issues of Numerical Computation
1.2.1 Low-Level Issues
1.2.2 High-Level Issues
1.3 A Summary of the Chapters

Chapter 2 Matrices and Linear Systems
2.1 Introduction
2.1.1 Motivation
2.1.2 Organization
2.1.3 Notational Conventions
2.2 Tuples
2.2.1 Definition
2.2.2 Arithmetic Operations
2.3 Matrices
2.3.1 Notation and Terminology
2.3.2 Transposition
2.3.3 Arithmetic Operations
2.3.4 Matrix Multiplication
2.4 Linear Systems
2.4.1 Linear Equations
2.4.2 Linear Systems in Two Unknowns
2.4.3 General Linear Systems
2.4.4 Row Reductions, Echelon Form, and Rank
2.5 Square Matrices
2.5.1 Diagonal Matrices
2.5.2 Triangular Matrices
2.5.3 The Determinant
2.5.4 Inverse
2.6 Linear Spaces
2.6.1 Fields
2.6.2 Definition and Properties
2.6.3 Subspaces
2.6.4 Linear Combinations and Span
2.6.5 Linear Independence, Dimension, and Basis
2.7 Linear Mappings
2.7.1 Mappings in General
2.7.2 Linear Mappings
2.7.3 Matrix Representation of Linear Mappings
2.7.4 Cramer’s Rule
2.8 Eigenvalues and Eigenvectors
2.9 Euclidean Space
2.9.1 Inner Product Spaces
2.9.2 Orthogonality and Orthonormal Sets
2.10 Least Squares
Recommended Reading

Chapter 3 Vector Algebra
3.1 Vector Basics
3.1.1 Vector Equivalence
3.1.2 Vector Addition
3.1.3 Vector Subtraction
3.1.4 Vector Scaling
3.1.5 Properties of Vector Addition and Scalar Multiplication
3.2 Vector Space
3.2.1 Span
3.2.2 Linear Independence
3.2.3 Basis, Subspaces, and Dimension
3.2.4 Orientation
3.2.5 Change of Basis
3.2.6 Linear Transformations
3.3 Affine Spaces
3.3.1 Euclidean Geometry
3.3.2 Volume, the Determinant, and the Scalar Triple Product
3.3.3 Frames
3.4 Affine Transformations
3.4.1 Types of Affine Maps
3.4.2 Composition of Affine Maps
3.5 Barycentric Coordinates and Simplexes
3.5.1 Barycentric Coordinates and Subspaces
3.5.2 Affine Independence

Chapter 4 Matrices, Vector Algebra, and Transformations
4.1 Introduction
4.2 Matrix Representation of Points and Vectors
4.3 Addition, Subtraction, and Multiplication
4.3.1 Vector Addition and Subtraction
4.3.2 Point and Vector Addition and Subtraction
4.3.3 Subtraction of Points
4.3.4 Scalar Multiplication
4.4 Products of Vectors
4.4.1 Dot Product
4.4.2 Cross Product
4.4.3 Tensor Product
4.4.4 The “Perp” Operator and the “Perp” Dot Product
4.5 Matrix Representation of Affine Transformations
4.6 Change-of-Basis/Frame/Coordinate System
4.7 Vector Geometry of Affine Transformations
4.7.1 Notation
4.7.2 Translation
4.7.3 Rotation
4.7.4 Scaling
4.7.5 Reflection
4.7.6 Shearing
4.8 Projections
4.8.1 Orthographic
4.8.2 Oblique
4.8.3 Perspective
4.9 Transforming Normal Vectors
Recommended Reading

Chapter 5 Geometric Primitives in 2D
5.1 Linear Components
5.1.1 Implicit Form
5.1.2 Parametric Form
5.1.3 Converting between Representations
5.2 Triangles
5.3 Rectangles
5.4 Polylines and Polygons
5.5 Quadratic Curves
5.5.1 Circles
5.5.2 Ellipses
5.6 Polynomial Curves
5.6.1 B′ezier Curves
5.6.2 B-Spline Curves
5.6.3 NURBS Curves

Chapter 6 Distance in 2D
6.1 Point to Linear Component
6.1.1 Point to Line
6.1.2 Point to Ray
6.1.3 Point to Segment
6.2 Point to Polyline
6.3 Point to Polygon
6.3.1 Point to Triangle
6.3.2 Point to Rectangle
6.3.3 Point to Orthogonal Frustum
6.3.4 Point to Convex Polygon
6.4 Point to Quadratic Curve
6.5 Point to Polynomial Curve
6.6 Linear Components
6.6.1 Line to Line
6.6.2 Line to Ray
6.6.3 Line to Segment
6.6.4 Ray to Ray
6.6.5 Ray to Segment
6.6.6 Segment to Segment
6.7 Linear Component to Polyline or Polygon
6.8 Linear Component to Quadratic Curve
6.9 Linear Component to Polynomial Curve
6.10 GJK Algorithm
6.10.1 Set Operations
6.10.2 Overview of the Algorithm
6.10.3 Alternatives to GJK

Chapter 7 Intersection in 2D
7.1 Linear Components
7.2 Linear Components and Polylines
7.3 Linear Components and Quadratic Curves
7.3.1 Linear Components and General Quadratic Curves
7.3.2 Linear Components and Circular Components
7.4 Linear Components and Polynomial Curves
7.4.1 Algebraic Method
7.4.2 Polyline Approximation
7.4.3 Hierarchical Bounding
7.4.4 Monotone Decomposition
7.4.5 Rasterization
7.5 Quadratic Curves
7.5.1 General Quadratic Curves
7.5.2 Circular Components
7.5.3 Ellipses
7.6 Polynomial Curves
7.6.1 Algebraic Method
7.6.2 Polyline Approximation
7.6.3 Hierarchical Bounding
7.6.4 Rasterization
7.7 The Method of Separating Axes
7.7.1 Separation by Projection onto a Line
7.7.2 Separation of Stationary Convex Polygons
7.7.3 Separation of Moving Convex Polygons
7.7.4 Intersection Set for Stationary Convex Polygons
7.7.5 Contact Set for Moving Convex Polygons

Chapter 8 Miscellaneous 2D Problems
8.1 Circle through Three Points
8.2 Circle Tangent to Three Lines
8.3 Line Tangent to a Circle at a Given Point
8.4 Line Tangent to a Circle through a Given Point
8.5 Lines Tangent to Two Circles
8.6 Circle through Two Points with a Given Radius
8.7 Circle through a Point and Tangent to a Line with a Given Radius
8.8 Circles Tangent to Two Lines with a Given Radius
8.9 Circles through a Point and Tangent to a Circle with a Given Radius
8.10 Circles Tangent to a Line and a Circle with a Given Radius
8.11 Circles Tangent to Two Circles with a Given Radius
8.12 Line Perpendicular to a Given Line through a Given Point
8.13 Line between and Equidistant to Two Points
8.14 Line Parallel to a Given Line at a Given Distance
8.15 Line Parallel to a Given Line at a Given Vertical (Horizontal) Distance
8.16 Lines Tangent to a Given Circle and Normal to a Given Line

Chapter 9 Geometric Primitives in 3D
9.1 Linear Components
9.2 Planar Components
9.2.1 Planes
9.2.2 Coordinate System Relative to a Plane
9.2.3 2D Objects in a Plane
9.3 Polymeshes, Polyhedra, and Polytopes
9.3.1 Vertex-Edge-Face Tables
9.3.2 Connected Meshes
9.3.3 Manifold Meshes
9.3.4 Closed Meshes
9.3.5 Consistent Ordering
9.3.6 Platonic Solids
9.4 Quadric Surfaces
9.4.1 Three Nonzero Eigenvalues
9.4.2 Two Nonzero Eigenvalues
9.4.3 One Nonzero Eigenvalue
9.5 Torus
9.6 Polynomial Curves
9.6.1 Bézier Curves
9.6.2 B-Spline Curves
9.6.3 NURBS Curves
9.7 Polynomial Surfaces
9.7.1 Bézier Surfaces
9.7.2 B-Spline Surfaces
9.7.3 NURBS Surfaces

Chapter 10 Distance in 3D
10.1 Introduction
10.2 Point to Linear Component
10.2.1 Point to Ray or Line Segment
10.2.2 Point to Polyline
10.3 Point to Planar Component
10.3.1 Point to Plane
10.3.2 Point to Triangle
10.3.3 Point to Rectangle
10.3.4 Point to Polygon
10.3.5 Point to Circle or Disk
10.4 Point to Polyhedron
10.4.1 General Problem
10.4.2 Point to Oriented Bounding Box
10.4.3 Point to Orthogonal Frustum
10.5 Point to Quadric Surface
10.5.1 Point to General Quadric Surface
10.5.2 Point to Ellipsoid
10.6 Point to Polynomial Curve
10.7 Point to Polynomial Surface
10.8 Linear Components
10.8.1 Lines and Lines
10.8.2 Segment/Segment, Line/Ray, Line/Segment, Ray/Ray, Ray/Segment
10.8.3 Segment to Segment, Alternative Approach
10.9 Linear Component to Triangle, Rectangle, Tetrahedron, Oriented Box
10.9.1 Linear Component to Triangle
10.9.2 Linear Component to Rectangle
10.9.3 Linear Component to Tetrahedron
10.9.4 Linear Component to Oriented Bounding Box
10.10 Line to Quadric Surface
10.11 Line to Polynomial Surface
10.12 GJK Algorithm
10.13 Miscellaneous
10.13.1 Distance between Line and Planar Curve
10.13.2 Distance between Line and Planar Solid Object
10.13.3 Distance between Planar Curves
10.13.4 Geodesic Distance on Surfaces

Chapter 11 Intersection in 3D
11.1 Linear Components and Planar Components
11.1.1 Linear Components and Planes
11.1.2 Linear Components and Triangles
11.1.3 Linear Components and Polygons
11.1.4 Linear Component and Disk
11.2 Linear Components and Polyhedra
11.3 Linear Components and Quadric Surfaces
11.3.1 General Quadric Surfaces
11.3.2 Linear Components and a Sphere
11.3.3 Linear Components and an Ellipsoid
11.3.4 Linear Components and Cylinders
11.3.5 Linear Components and a Cone
11.4 Linear Components and Polynomial Surfaces
11.4.1 Algebraic Surfaces
11.4.2 Free-Form Surfaces
11.5 Planar Components
11.5.1 Two Planes
11.5.2 Three Planes
11.5.3 Triangle and Plane
11.5.4 Triangle and Triangle
11.6 Planar Components and Polyhedra
11.6.1 Trimeshes
11.6.2 General Polyhedra
11.7 Planar Components and Quadric Surface
11.7.1 Plane and General Quadric Surface
11.7.2 Plane and Sphere
11.7.3 Plane and Cylinder
11.7.4 Plane and Cone
11.7.5 Triangle and Cone
11.8 Planar Components and Polynomial Surfaces
11.8.1 Hermite Curves
11.8.2 Geometry Definitions
11.8.3 Computing the Curves
11.8.4 The Algorithm
11.8.5 Implementation Notes
11.9 Quadric Surfaces
11.9.1 General Intersection
11.9.2 Ellipsoids
11.10 Polynomial Surfaces
11.10.1 Subdivision Methods
11.10.2 Lattice Evaluation
11.10.3 Analytic Methods
11.10.4 Marching Methods
11.11 The Method of Separating Axes
11.11.1 Separation of Stationary Convex Polyhedra
11.11.2 Separation of Moving Convex Polyhedra
11.11.3 Intersection Set for Stationary Convex Polyhedra
11.11.4 Contact Set for Moving Convex Polyhedra
11.12 Miscellaneous
11.12.1 Oriented Bounding Box and Orthogonal Frustum
11.12.2 Linear Component and Axis-Aligned Bounding Box
11.12.3 Linear Component and Oriented Bounding Box
11.12.4 Plane and Axis-Aligned Bounding Box
11.12.5 Plane and Oriented Bounding Box
11.12.6 Axis-Aligned Bounding Boxes
11.12.7 Oriented Bounding Boxes
11.12.8 Sphere and Axis-Aligned Bounding Box
11.12.9 Cylinders
11.12.10 Linear Component and Torus

Chapter 12 Miscellaneous 3D Problems
12.1 Projection of a Point onto a Plane
12.2 Projection of a Vector onto a Plane
12.3 Angle between a Line and a Plane
12.4 Angle between Two Planes
12.5 Plane Normal to a Line and through a Given Point
12.6 Plane through Three Points
12.7 Angle between Two Lines

Chapter 13 Computational Geometry Topics
13.1 Binary Space-Partitioning Trees in 2D
13.1.1 BSP Tree Representation of a Polygon
13.1.2 Minimum Splits versus Balanced Trees
13.1.3 Point in Polygon Using BSP Trees
13.1.4 Partitioning a Line Segment by a BSP Tree
13.2 Binary Space-Partitioning Trees in 3D
13.2.1 BSP Tree Representation of a Polyhedron
13.2.2 Minimum Splits versus Balanced Trees
13.2.3 Point in Polyhedron Using BSP Trees
13.2.4 Partitioning a Line Segment by a BSP Tree
13.2.5 Partitioning a Convex Polygon by a BSP Tree
13.3 Point in Polygon
13.3.1 Point in Triangle
13.3.2 Point in Convex Polygon
13.3.3 Point in General Polygon
13.3.4 Faster Point in General Polygon
13.3.5 A Grid Method
13.4 Point in Polyhedron
13.4.1 Point in Tetrahedron
13.4.2 Point in Convex Polyhedron
13.4.3 Point in General Polyhedron
13.5 Boolean Operations on Polygons
13.5.1 The Abstract Operations
13.5.2 The Two Primitive Operations
13.5.3 Boolean Operations Using BSP Trees
13.5.4 Other Algorithms
13.6 Boolean Operations on Polyhedra
13.6.1 Abstract Operations
13.6.2 Boolean Operations Using BSP Trees
13.7 Convex Hulls
13.7.1 Convex Hulls in 2D
13.7.2 Convex Hulls in 3D
13.7.3 Convex Hulls in Higher Dimensions
13.8 Delaunay Triangulation
13.8.1 Incremental Construction in 2D
13.8.2 Incremental Construction in General Dimensions
13.8.3 Construction by Convex Hull
13.9 Polygon Partitioning
13.9.1 Visibility Graph of a Simple Polygon
13.9.2 Triangulation
13.9.3 Triangulation by Horizontal Decomposition
13.9.4 Convex Partitioning
13.10 Circumscribed and Inscribed Balls
13.10.1 Circumscribed Ball
13.10.2 Inscribed Ball
13.11 Minimum Bounds for Point Set
13.11.1 Minimum-Area Rectangle
13.11.2 Minimum-Volume Box
13.11.3 Minimum-Area Circle
13.11.4 Minimum-Volume Sphere
13.11.5 Miscellaneous
13.12 Area and Volume Measurements
13.12.1 Area of a 2D Polygon
13.12.2 Area of a 3D Polygon
13.12.3 Volume of a Polyhedron

Appendix A Numerical Methods
A.1 Solving Linear Systems
A.1.1 Special Case: Solving a Triangular System
A.1.2 Gaussian Elimination
A.2 Systems of Polynomials
A.2.1 Linear Equations in One Formal Variable
A.2.2 Any-Degree Equations in One Formal Variable
A.2.3 Any-Degree Equations in Any Formal Variables
A.3 Matrix Decompositions
A.3.1 Euler Angle Factorization
A.3.2 QR Decomposition
A.3.3 Eigendecomposition
A.3.4 Polar Decomposition
A.3.5 Singular Value Decomposition
A.4 Representations of 3D Rotations
A.4.1 Matrix Representation
A.4.2 Axis-Angle Representation
A.4.3 Quaternion Representation
A.4.4 Performance Issues
A.5 Root Finding
A.5.1 Methods in One Dimension
A.5.2 Methods in Many Dimensions
A.5.3 Stable Solution to Quadratic Equations
A.6 Minimization
A.6.1 Methods in One Dimension
A.6.2 Methods in Many Dimensions
A.6.3 Minimizing a Quadratic Form
A.6.4 Minimizing a Restricted Quadratic Form
A.7 Least Squares Fitting
A.7.1 Linear Fitting of Points (x, f (x))
A.7.2 Linear Fitting of Points Using Orthogonal Regression
A.7.3 Planar Fitting of Points (x, y, f (x, y))
A.7.4 Hyperplanar Fitting of Points Using Orthogonal Regression
A.7.5 Fitting a Circle to 2D Points
A.7.6 Fitting a Sphere to 3D Points
A.7.7 Fitting a Quadratic Curve to 2D Points
A.7.8 Fitting a Quadric Surface to 3D Points
A.8 Subdivision of Curves
A.8.1 Subdivision by Uniform Sampling
A.8.2 Subdivision by Arc Length
A.8.3 Subdivision by Midpoint Distance
A.8.4 Subdivision by Variation
A.9 Topics from Calculus
A.9.1 Level Sets
A.9.2 Minima and Maxima of Functions
A.9.3 Lagrange Multipliers

Appendix B Trigonometry
B.1 Introduction
B.1.1 Terminology
B.1.2 Angles
B.1.3 Conversion Examples
B.2 Trigonometric Functions
B.2.1 Definitions in Terms of Exponentials
B.2.2 Domains and Ranges
B.2.3 Graphs of Trigonometric Functions
B.2.4 Derivatives of Trigonometric Functions
B.2.5 Integration
B.3 Trigonometric Identities and Laws
B.3.1 Periodicity
B.3.2 Laws
B.3.3 Formulas
B.4 Inverse Trigonometric Functions
B.4.1 Defining arcsin and arccos in Terms of arctan
B.4.2 Domains and Ranges
B.4.3 Graphs
B.4.4 Derivatives
B.4.5 Integration
B.5 Further Reading

Appendix C Basic Formulas for Geometric Primitives
C.1 Introduction
C.2 Triangles
C.2.1 Symbols
C.2.2 Definitions
C.2.3 Right Triangles
C.2.4 Equilateral Triangle
C.2.5 General Triangle
C.3 Quadrilaterals
C.3.1 Square
C.3.2 Rectangle
C.3.3 Parallelogram
C.3.4 Rhombus
C.3.5 Trapezoid
C.3.6 General Quadrilateral
C.4 Circles
C.4.1 Symbols
C.4.2 Full Circle
C.4.3 Sector of a Circle
C.4.4 Segment of a Circle
C.5 Polyhedra
C.5.1 Symbols
C.5.2 Box
C.5.3 Prism
C.5.4 Pyramid
C.6 Cylinder
C.7 Cone
C.8 Spheres
C.8.1 Segments
C.8.2 Sector
C.9 Torus

References
Index
About the Authors

posted on 2006-11-26 17:59 zmj 閱讀(2381) 評論(1)  編輯 收藏 引用

評論

# re: 計算機圖形學(xué)幾何工具算法詳解(英文目錄) 2007-08-07 11:43 sunjunling

hao  回復(fù)  更多評論   


只有注冊用戶登錄后才能發(fā)表評論。
網(wǎng)站導(dǎo)航: 博客園   IT新聞   BlogJava   博問   Chat2DB   管理


青青草原综合久久大伊人导航_色综合久久天天综合_日日噜噜夜夜狠狠久久丁香五月_热久久这里只有精品
  • <ins id="pjuwb"></ins>
    <blockquote id="pjuwb"><pre id="pjuwb"></pre></blockquote>
    <noscript id="pjuwb"></noscript>
          <sup id="pjuwb"><pre id="pjuwb"></pre></sup>
            <dd id="pjuwb"></dd>
            <abbr id="pjuwb"></abbr>
            欧美色另类天堂2015| 午夜精品久久久久久久久久久久久 | 中国日韩欧美久久久久久久久| 欧美成人有码| 亚洲欧洲av一区二区| 亚洲福利在线视频| 欧美亚洲在线| 亚洲一区二区三区四区视频| 99www免费人成精品| 亚洲国产毛片完整版| 狠狠入ady亚洲精品| 国产精品视频最多的网站| 久久精精品视频| 午夜精品亚洲| 欧美一级播放| 好吊视频一区二区三区四区| 韩国三级在线一区| 国内精品久久久久影院薰衣草| 国产精品日韩专区| 欧美精品一区二| 久久精品夜色噜噜亚洲aⅴ| 亚洲网站在线| 亚洲欧美日韩中文视频| 亚洲精品一区二区三区蜜桃久| 久久一区国产| 久久久精品日韩| 美女图片一区二区| 亚洲国产婷婷香蕉久久久久久| 欧美大尺度在线| 欧美粗暴jizz性欧美20| 亚洲娇小video精品| 99re热精品| 先锋影院在线亚洲| 欧美国产日韩一区二区| 欧美性大战久久久久久久| 亚洲免费视频一区二区| 久久频这里精品99香蕉| 欧美日产一区二区三区在线观看| 欧美四级电影网站| 国模吧视频一区| 亚洲美女性视频| 亚洲一区日韩| 亚洲欧美在线免费观看| 免播放器亚洲| 在线视频中文亚洲| 亚洲一区二区在线观看视频| 1000部国产精品成人观看| 亚洲国产精品精华液2区45| 夜夜夜久久久| 性欧美8khd高清极品| 99精品热视频只有精品10| 欧美伊人久久久久久午夜久久久久 | 亚洲精品人人| 久久精品国产一区二区三| 欧美久久久久中文字幕| 国产真实久久| 亚洲一区二区久久| 亚洲福利视频一区二区| 欧美一区二区高清| 欧美ed2k| 黑人巨大精品欧美一区二区 | 欧美成人中文字幕| 含羞草久久爱69一区| 这里是久久伊人| 蜜桃av噜噜一区| 亚洲国产精品久久人人爱蜜臀| 亚洲一区久久| 欧美激情一区二区| 久久亚洲高清| 精品99一区二区| 久久国产精品久久久久久| 亚洲乱码国产乱码精品精98午夜| 久久综合伊人77777蜜臀| 欧美精品一区二区在线播放| 亚洲风情亚aⅴ在线发布| 久久久久国产成人精品亚洲午夜| 亚洲一区免费网站| 欧美国产日本高清在线| 99riav1国产精品视频| 亚洲手机在线| 在线视频欧美日韩精品| 午夜国产欧美理论在线播放| 国产精品wwwwww| 免费国产一区二区| 欧美不卡一区| 一区二区三区**美女毛片| 亚洲高清电影| 欧美精品一区二区三| 欧美激情中文字幕一区二区| 国产一区二区三区免费不卡 | 亚洲人成网站在线播| 猛干欧美女孩| 国产日韩视频| 久久久综合香蕉尹人综合网| 久久成人国产| 在线看日韩欧美| 亚洲电影免费观看高清完整版在线观看 | 另类春色校园亚洲| 久久久国产一区二区| 国产精品成人免费| 校园激情久久| 久久久久久综合网天天| 亚洲国产视频一区二区| 亚洲人精品午夜在线观看| 久久久久欧美精品| 黄色亚洲大片免费在线观看| 欧美暴力喷水在线| 欧美精品成人| 午夜在线电影亚洲一区| 欧美在线91| 亚洲毛片在线观看| 亚洲午夜精品国产| 国产精品久久久久久av福利软件| 欧美一区二区高清在线观看| 久久精品导航| 一本久久a久久精品亚洲| 亚洲欧美在线视频观看| 久久中文字幕一区| 欧美在线电影| 亚洲一区二区免费看| 亚洲永久免费av| 久久免费国产精品1| 亚洲视频免费看| 国产欧美一区二区三区在线老狼 | 国产精品视频99| 亚洲欧洲在线一区| 在线中文字幕一区| 国产一区二区三区久久 | 亚洲少妇中出一区| 久久久www成人免费无遮挡大片| 一二美女精品欧洲| 亚洲尤物在线视频观看| 亚洲精品美女在线观看| 亚洲一区一卡| 在线一区欧美| 狠狠色狠狠色综合日日91app| 久久综合狠狠综合久久激情| 亚洲女人小视频在线观看| 欧美日一区二区在线观看| 中国成人在线视频| 麻豆久久久9性大片| 久久精品国产2020观看福利| 欧美日韩无遮挡| 亚洲午夜女主播在线直播| 久久久夜夜夜| 亚洲精品日韩在线观看| 久久久999精品免费| 欧美一区二区三区在线视频 | 亚洲国产精品电影| 一区二区三区视频在线观看| 国产一区二区高清不卡| 亚洲精品美女在线观看播放| 久久中文字幕导航| 日韩视频免费在线观看| 免费不卡视频| 亚洲福利视频一区二区| 亚洲韩日在线| 亚洲精选中文字幕| 久久精品一本久久99精品| 欧美亚洲成人免费| 亚洲二区精品| 伊人久久综合| 香蕉免费一区二区三区在线观看 | 免费高清在线视频一区·| 免费高清在线视频一区·| 国产精品久久久久婷婷| 激情欧美一区二区| 久久精品国产精品亚洲精品| 久久精品网址| 国产亚洲一级高清| 久久久久久自在自线| 久久一区激情| 亚洲黄页视频免费观看| 久久男人av资源网站| 久久成人免费日本黄色| 国产精品久久久久7777婷婷| 最新69国产成人精品视频免费| 亚洲欧洲午夜| 蜜臀久久久99精品久久久久久| 国产日韩在线看| 亚洲综合色丁香婷婷六月图片| 日韩亚洲精品电影| 亚洲精品系列| 国模 一区 二区 三区| 中日韩美女免费视频网址在线观看 | 欧美成人免费va影院高清| 欧美午夜寂寞影院| 中文在线资源观看网站视频免费不卡 | 亚洲精品视频在线| 国产精品午夜av在线| 久久久水蜜桃| 国产精品手机在线| 狂野欧美一区| 国产在线成人| 亚洲国产三级网| 国产午夜精品理论片a级大结局| 亚洲大片av| 亚洲人精品午夜| 蜜臀91精品一区二区三区| 久久gogo国模啪啪人体图|