• <ins id="pjuwb"></ins>
    <blockquote id="pjuwb"><pre id="pjuwb"></pre></blockquote>
    <noscript id="pjuwb"></noscript>
          <sup id="pjuwb"><pre id="pjuwb"></pre></sup>
            <dd id="pjuwb"></dd>
            <abbr id="pjuwb"></abbr>

            OpenGL Polygon Offset

            OpenGL

            Polygon Offset



            Tutorials > OpenGL > Polygon?Offset

            LINK:http://www.zeuscmd.com/tutorials/opengl/15-PolygonOffset.php
            ull Source

            Introduction

            Polygon Offset It is often quite useful to accentuate the edges of your objects by rendering your object once in fill mode and once in line mode. This often produces unsatisfactory results as the line may move into and out of the polygon. This effect is commonly known as stitching.

            You may have also noticed in the past that when rendering two polygons that overlap each other, Z-fighting occurs and parts of each polygon are rendered.

            The results of stitching and z-fighting can be seen in the figures below.

            Stitching Effect Stitching Effect
            Stitching Effect Z-Fighting Effect

            This tutorial expands on tutorial 13 and shows how you can overcome these effects by making use of polygon offsets.

            Contents of main.cpp :


            One variable is kept to indicate whether polygon offsets are currently being used. This will allow you to toggle polygon offsets on and off to see exactly how this technique improves the program.

            				bool offset = true;
            

            The drawBox function remains exactly the same except that the calls to change the current color have been removed.

            				void drawBox()
            {
            	glBegin(GL_QUADS);
            		// FRONTglVertex3f(-0.5f, -0.5f,  0.5f);
            		glVertex3f( 0.5f, -0.5f,  0.5f);
            		glVertex3f( 0.5f,  0.5f,  0.5f);
            		glVertex3f(-0.5f,  0.5f,  0.5f);
            		// BACKglVertex3f(-0.5f, -0.5f, -0.5f);
            		glVertex3f(-0.5f,  0.5f, -0.5f);
            		glVertex3f( 0.5f,  0.5f, -0.5f);
            		glVertex3f( 0.5f, -0.5f, -0.5f);
            		// LEFTglVertex3f(-0.5f, -0.5f,  0.5f);
            		glVertex3f(-0.5f,  0.5f,  0.5f);
            		glVertex3f(-0.5f,  0.5f, -0.5f);
            		glVertex3f(-0.5f, -0.5f, -0.5f);
            		// RIGHTglVertex3f( 0.5f, -0.5f, -0.5f);
            		glVertex3f( 0.5f,  0.5f, -0.5f);
            		glVertex3f( 0.5f,  0.5f,  0.5f);
            		glVertex3f( 0.5f, -0.5f,  0.5f);
            		// TOPglVertex3f(-0.5f,  0.5f,  0.5f);
            		glVertex3f( 0.5f,  0.5f,  0.5f);
            		glVertex3f( 0.5f,  0.5f, -0.5f);
            		glVertex3f(-0.5f,  0.5f, -0.5f);
            		// BOTTOMglVertex3f(-0.5f, -0.5f,  0.5f);
            		glVertex3f(-0.5f, -0.5f, -0.5f);
            		glVertex3f( 0.5f, -0.5f, -0.5f);
            		glVertex3f( 0.5f, -0.5f,  0.5f);
            	glEnd();
            }
            

            To show the effects of z-fighting, we will be displaying some polygons on top of a cube. A drawPolygon function has therefore been created to simplify creation of multiple quads.

            				void drawPolygon()
            {
            	glBegin(GL_QUADS);
            		glVertex3f(-0.5f, -0.5f,  0.0f);
            		glVertex3f( 0.5f, -0.5f,  0.0f);
            		glVertex3f( 0.5f,  0.5f,  0.0f);
            		glVertex3f(-0.5f,  0.5f,  0.0f);
            	glEnd();
            }
            

            The beginning of our display function remains the same.

            				void display()
            {
            	glClear(GL_COLOR_BUFFER_BIT | GL_DEPTH_BUFFER_BIT);
            	glLoadIdentity();
            
            	gluLookAt(
            		0.0f, 0.0f, 3.0f,
            		0.0f, 0.0f, 0.0f,
            		0.0f, 1.0f, 0.0f);
            
            	glRotatef(xrot, 1.0f, 0.0f, 0.0f);
            	glRotatef(yrot, 0.0f, 1.0f, 0.0f);
            

            The object we will be creating can be seen at the beginning of this tutorial. It is a red cube, outlined by a black line. The one side of the red cube has 3 overlapping polygons on top of it.

            Polygon offsets can be used in a number of ways to reduce the errors caused by these overlapping primitives. One possible solution is to offset the polygons of the cube to make it slightly smaller. This will allow the lines and additional polygons from being rendered without interfering with the cube.

            There are three different ways to enable polygon offset, one for each rasterization mode (GL_POINT, GL_LINE and GL_FILL). This is specified by a single call to glEnable with one of the parameters, GL_POLYGON_OFFSET_POINT, GL_POLYGON_OFFSET_LINE and GL_POLYGON_OFFSET_FILL respectively.

            The cube will first be rendered, so we pass the GL_POLYGON_OFFSET_FILL flag onto the glEnable function.

            				if (offset)
            	{
            		glEnable(GL_POLYGON_OFFSET_FILL);
            

            It is necessary to specify how much a polygon must be offset. This is achieved with a call to the glPolygonOffset function. This function accepts 2 parameters, GLfloatfactor and GLfloatunits.

            The depth value of each fragment is added to an offset value which is calculate in the following way?:

            offset = (m * factor) + (r * units)

            where m is the maximum depth slope of the polygon and r is the smallest value guaranteed to produce a resolvable difference in window coordinate depth values. The value r is an implementation-specific constant.

            A positive offset will push the object away from you whereas a negative offset will pull the object towards you.

            The depth slope is the change in z (depth) value divided by the change in either x or y coordinates as you traverse the polygon. Therefore, polygons that are parallel to the near and far clipping planes will have a depth slope of zero. The closer the depth slope is to 0, the smaller the offset needs to be.

            There is quite a bit of maths involved but luckily it is often good enough to simply use values such as 1.0 or 0.0 for the factor and units parameters, which is what we will be doing in this tutorial. As we want the polygons of the cube to be pushed away from us, we pass positive 1 as both parameters to glPolygonOffset.

            				glPolygonOffset(1.0f, 1.0f);
            	}
            

            The cube is then rendered as per normal in the GL_FILL rasterization mode. After this has been done, polygon offset is disabled.

            				glColor3f(1.0f, 0.0f, 0.0f);
            	glPolygonMode(GL_FRONT_AND_BACK, GL_FILL);
            	drawBox();
            
            	if (offset)
            		glDisable(GL_POLYGON_OFFSET_FILL);
            

            The green and yellow polygons on the front of the cube can now be rendered without worrying about z-fighting.

            				glColor3f(0.0f, 1.0f, 0.0f);
            	glPushMatrix();
            		glTranslatef(-0.25f, -0.25f, 0.5f);
            		glScalef(0.5f, 0.5f, 0.5f);
            		drawPolygon();
            	glPopMatrix();
            
            	glColor3f(1.0f, 1.0f, 0.0f);
            	glPushMatrix();
            		glTranslatef(0.25f, 0.25f, 0.5f);
            		glScalef(0.5f, 0.5f, 0.5f);
            		drawPolygon();
            	glPopMatrix();
            

            If we now try to render the blue polygon, it will cause z-fighting with the green and yellow polygons on the front of the cube.

            A way around this is to pull the blue polygon towards us to prevent z-fighting with both the cube and the front polygons. This is done by passing -1 as both parameters to the glPolygonOffset function.

            				if (offset)
            	{
            		glEnable(GL_POLYGON_OFFSET_FILL);
            		glPolygonOffset(-1.0f, -1.0f);
            	}
            
            	glColor3f(0.0f, 0.0f, 1.0f);
            	glPushMatrix();
            		glTranslatef(0.0f, 0.0f, 0.5f);
            		glScalef(0.5f, 0.5f, 0.5f);
            		drawPolygon();
            	glPopMatrix();
            
            	if (offset)
            		glDisable(GL_POLYGON_OFFSET_FILL);
            

            If we were to now render the outline of the cube, stitching would occur with the front polygons. The lines can therefore be pulled towards us in the same way that the blue polygon was. The only difference is that now we need to pass GL_POLYGON_OFFSET_LINE onto the glEnable function instead.

            				if (offset)
            	{
            		glEnable(GL_POLYGON_OFFSET_LINE);
            		glPolygonOffset(-1.0f, -1.0f);
            	}
            
            	glColor3f(0.0f, 0.0f, 0.0f);
            	glPolygonMode(GL_FRONT_AND_BACK, GL_LINE);
            	drawBox();
            
            	if (offset)
            		glDisable(GL_POLYGON_OFFSET_LINE);
            		
            	glFlush();
            }
            

            Our idle function remains the same except that now polygon offset can be toggled on and off by pressing the O key.

            				void idle()
            {
            	.
            	.
            
            	if (opengl->isKeyDown('O'))
            	{
            		opengl->keyUp('O');
            		offset = !offset;
            	}
            }
            

            By enabling and disabling polygon offset, you can clearly see how it affects your program. The result is shown below?:

            Orthographic View Perspective View
            Polygon Offset Enabled Polygon Offset Disabled

            You should now be able to effectively combat z-buffering and stitching. This is a great feature of OpenGL and can be used to greatly enhance the appearance of your application.

            Please let me know of any comments you may have : Contact Me

            Win32?Source?Files?: Visual Studio Dev-C++
            GLUT?Source?Files?: Visual Studio Dev-C++ Unix / Linux

            posted on 2006-11-16 11:48 zmj 閱讀(2499) 評論(0)  編輯 收藏 引用

            亚洲国产欧美国产综合久久| 欧美喷潮久久久XXXXx| 久久久99精品成人片中文字幕| 青青草国产精品久久| 香蕉aa三级久久毛片| 久久亚洲精品中文字幕| 国产99久久九九精品无码| 97香蕉久久夜色精品国产| 色欲综合久久中文字幕网| 7国产欧美日韩综合天堂中文久久久久 | 久久有码中文字幕| 人妻精品久久久久中文字幕69| 久久精品国产久精国产| 伊人久久亚洲综合影院| 久久综合综合久久狠狠狠97色88| 久久99九九国产免费看小说| 久久福利青草精品资源站免费 | 一本久道久久综合狠狠爱| 嫩草影院久久国产精品| 国产A三级久久精品| 精品久久久无码中文字幕天天| 男女久久久国产一区二区三区| 亚洲精品NV久久久久久久久久| 国产精品欧美久久久久天天影视| 天堂久久天堂AV色综合| 久久久无码精品午夜| 亚洲国产成人久久综合一| 精品无码久久久久久尤物| 国产成人精品综合久久久| 热久久视久久精品18| 久久久久亚洲精品天堂久久久久久 | 伊人久久大香线蕉综合热线| 国产无套内射久久久国产| 久久久久一区二区三区| 久久99精品国产| 国产精久久一区二区三区| 久久线看观看精品香蕉国产| 国产成人久久精品一区二区三区| 久久久久久无码Av成人影院| 国产成人久久精品一区二区三区| 久久无码人妻一区二区三区午夜 |