4
、指針參數(shù)是如何傳遞內(nèi)存的?
如果函數(shù)的參數(shù)是一個(gè)指針,不要指望用該指針去申請(qǐng)動(dòng)態(tài)內(nèi)存。示例7-4-1中,Test函數(shù)的語句GetMemory(str, 200)并沒有使str獲得期望的內(nèi)存,str依舊是NULL,為什么?
void GetMemory(char *p, int num) { p = (char *)malloc(sizeof(char) * num); } void Test(void) { char *str = NULL; GetMemory(str, 100); // str 仍然為 NULL strcpy(str, "hello"); // 運(yùn)行錯(cuò)誤 } 示例4.1 試圖用指針參數(shù)申請(qǐng)動(dòng)態(tài)內(nèi)存
|
?
毛病出在函數(shù)GetMemory中。編譯器總是要為函數(shù)的每個(gè)參數(shù)制作臨時(shí)副本,指針參數(shù)p的副本是 _p,編譯器使 _p = p。如果函數(shù)體內(nèi)的程序修改了_p的內(nèi)容,就導(dǎo)致參數(shù)p的內(nèi)容作相應(yīng)的修改。這就是指針可以用作輸出參數(shù)的原因。在本例中,_p申請(qǐng)了新的內(nèi)存,只是把 _p所指的內(nèi)存地址改變了,但是p絲毫未變。所以函數(shù)GetMemory并不能輸出任何東西。事實(shí)上,每執(zhí)行一次GetMemory就會(huì)泄露一塊內(nèi)存,因?yàn)闆]有用free釋放內(nèi)存。
如果非得要用指針參數(shù)去申請(qǐng)內(nèi)存,那么應(yīng)該改用“指向指針的指針”,見示例4.2。
void GetMemory2(char **p, int num) { *p = (char *)malloc(sizeof(char) * num); } void Test2(void) { char *str = NULL; GetMemory2(&str, 100); // 注意參數(shù)是 &str,而不是str strcpy(str, "hello"); cout<< str << endl; free(str); } 示例4.2用指向指針的指針申請(qǐng)動(dòng)態(tài)內(nèi)存
|
?
?
由于“指向指針的指針”這個(gè)概念不容易理解,我們可以用函數(shù)返回值來傳遞動(dòng)態(tài)內(nèi)存。這種方法更加簡(jiǎn)單,見示例4.3。
char *GetMemory3(int num) { char *p = (char *)malloc(sizeof(char) * num); return p; } void Test3(void) { char *str = NULL; str = GetMemory3(100); strcpy(str, "hello"); cout<< str << endl; free(str); } 示例4.3 用函數(shù)返回值來傳遞動(dòng)態(tài)內(nèi)存
|
?
用函數(shù)返回值來傳遞動(dòng)態(tài)內(nèi)存這種方法雖然好用,但是常常有人把return語句用錯(cuò)了。這里強(qiáng)調(diào)不要用return語句返回指向“棧內(nèi)存”的指針,因?yàn)樵搩?nèi)存在函數(shù)結(jié)束時(shí)自動(dòng)消亡,見示例4.4。
?
char *GetString(void) { char p[] = "hello world"; return p; // 編譯器將提出警告 } void Test4(void) { char *str = NULL; str = GetString(); // str 的內(nèi)容是垃圾 cout<< str << endl; } 示例4.4 return語句返回指向“棧內(nèi)存”的指針
|
?
?
用調(diào)試器逐步跟蹤Test4,發(fā)現(xiàn)執(zhí)行str = GetString語句后str不再是NULL指針,但是str的內(nèi)容不是“hello world”而是垃圾。
如果把示例4.4改寫成示例4.5,會(huì)怎么樣?
char *GetString2(void) { char *p = "hello world"; return p; } void Test5(void) { char *str = NULL; str = GetString2(); cout<< str << endl; } 示例4.5 return語句返回常量字符串
|
函數(shù)Test5運(yùn)行雖然不會(huì)出錯(cuò),但是函數(shù)GetString2的設(shè)計(jì)概念卻是錯(cuò)誤的。因?yàn)镚etString2內(nèi)的“hello world”是常量字符串,位于靜態(tài)存儲(chǔ)區(qū),它在程序生命期內(nèi)恒定不變。無論什么時(shí)候調(diào)用GetString2,它返回的始終是同一個(gè)“只讀”的內(nèi)存塊。
?
5
、杜絕
“
野指針
”
?
“野指針”不是NULL指針,是指向“垃圾”內(nèi)存的指針。人們一般不會(huì)錯(cuò)用NULL指針,因?yàn)橛胕f語句很容易判斷。但是“野指針”是很危險(xiǎn)的,if語句對(duì)它不起作用。 “野指針”的成因主要有兩種:
(1)指針變量沒有被初始化。任何指針變量剛被創(chuàng)建時(shí)不會(huì)自動(dòng)成為NULL指針,它的缺省值是隨機(jī)的,它會(huì)亂指一氣。所以,指針變量在創(chuàng)建的同時(shí)應(yīng)當(dāng)被初始化,要么將指針設(shè)置為NULL,要么讓它指向合法的內(nèi)存。例如
char *p = NULL; char *str = (char *) malloc(100);
|
(2)指針p被free或者delete之后,沒有置為NULL,讓人誤以為p是個(gè)合法的指針。
(3)指針操作超越了變量的作用范圍。這種情況讓人防不勝防,示例程序如下:
class A { public: void Func(void){ cout << “Func of class A” << endl; } }; void Test(void) { A *p; { A a; p = &a; // 注意 a 的生命期 } p->Func(); // p是“野指針” }
|
函數(shù)Test在執(zhí)行語句p->Func()時(shí),對(duì)象a已經(jīng)消失,而p是指向a的,所以p就成了“野指針”。但奇怪的是我運(yùn)行這個(gè)程序時(shí)居然沒有出錯(cuò),這可能與編譯器有關(guān)。
6、有了malloc/free為什么還要new/delete?
malloc與free是C++/C語言的標(biāo)準(zhǔn)庫(kù)函數(shù),new/delete是C++的運(yùn)算符。它們都可用于申請(qǐng)動(dòng)態(tài)內(nèi)存和釋放內(nèi)存。
對(duì)于非內(nèi)部數(shù)據(jù)類型的對(duì)象而言,光用maloc/free無法滿足動(dòng)態(tài)對(duì)象的要求。對(duì)象在創(chuàng)建的同時(shí)要自動(dòng)執(zhí)行構(gòu)造函數(shù),對(duì)象在消亡之前要自動(dòng)執(zhí)行析構(gòu)函數(shù)。由于malloc/free是庫(kù)函數(shù)而不是運(yùn)算符,不在編譯器控制權(quán)限之內(nèi),不能夠把執(zhí)行構(gòu)造函數(shù)和析構(gòu)函數(shù)的任務(wù)強(qiáng)加于malloc/free。
因此C++語言需要一個(gè)能完成動(dòng)態(tài)內(nèi)存分配和初始化工作的運(yùn)算符new,以及一個(gè)能完成清理與釋放內(nèi)存工作的運(yùn)算符delete。注意 new/delete不是庫(kù)函數(shù)。我們先看一看malloc/free和new/delete如何實(shí)現(xiàn)對(duì)象的動(dòng)態(tài)內(nèi)存管理,見示例6。
class Obj { public : Obj(void){ cout << “Initialization” << endl; } ~Obj(void){ cout << “Destroy” << endl; } void Initialize(void){ cout << “Initialization” << endl; } void Destroy(void){ cout << “Destroy” << endl; } }; void UseMallocFree(void) { Obj *a = (obj *)malloc(sizeof(obj)); // 申請(qǐng)動(dòng)態(tài)內(nèi)存 a->Initialize(); // 初始化 //… a->Destroy(); // 清除工作 free(a); // 釋放內(nèi)存 } void UseNewDelete(void) { Obj *a = new Obj; // 申請(qǐng)動(dòng)態(tài)內(nèi)存并且初始化 //… delete a; // 清除并且釋放內(nèi)存 } 示例6 用malloc/free和new/delete如何實(shí)現(xiàn)對(duì)象的動(dòng)態(tài)內(nèi)存管理
|
類Obj的函數(shù)Initialize模擬了構(gòu)造函數(shù)的功能,函數(shù)Destroy模擬了析構(gòu)函數(shù)的功能。函數(shù)UseMallocFree中,由于 malloc/free不能執(zhí)行構(gòu)造函數(shù)與析構(gòu)函數(shù),必須調(diào)用成員函數(shù)Initialize和Destroy來完成初始化與清除工作。函數(shù) UseNewDelete則簡(jiǎn)單得多。
所以我們不要企圖用malloc/free來完成動(dòng)態(tài)對(duì)象的內(nèi)存管理,應(yīng)該用new/delete。由于內(nèi)部數(shù)據(jù)類型的“對(duì)象”沒有構(gòu)造與析構(gòu)的過程,對(duì)它們而言malloc/free和new/delete是等價(jià)的。
既然new/delete的功能完全覆蓋了malloc/free,為什么C++不把malloc/free淘汰出局呢?這是因?yàn)镃++程序經(jīng)常要調(diào)用C函數(shù),而C程序只能用malloc/free管理動(dòng)態(tài)內(nèi)存。
如果用free釋放“new創(chuàng)建的動(dòng)態(tài)對(duì)象”,那么該對(duì)象因無法執(zhí)行析構(gòu)函數(shù)而可能導(dǎo)致程序出錯(cuò)。如果用delete釋放“malloc申請(qǐng)的動(dòng)態(tài)內(nèi)存”,理論上講程序不會(huì)出錯(cuò),但是該程序的可讀性很差。所以new/delete必須配對(duì)使用,malloc/free也一樣。
posted on 2007-02-24 23:43
jay 閱讀(2324)
評(píng)論(1) 編輯 收藏 引用 所屬分類:
內(nèi)存管理