• <ins id="pjuwb"></ins>
    <blockquote id="pjuwb"><pre id="pjuwb"></pre></blockquote>
    <noscript id="pjuwb"></noscript>
          <sup id="pjuwb"><pre id="pjuwb"></pre></sup>
            <dd id="pjuwb"></dd>
            <abbr id="pjuwb"></abbr>

            牽著老婆滿街逛

            嚴以律己,寬以待人. 三思而后行.
            GMail/GTalk: yanglinbo#google.com;
            MSN/Email: tx7do#yahoo.com.cn;
            QQ: 3 0 3 3 9 6 9 2 0 .

            Gossip算法

            轉載自:http://blog.csdn.net/chen77716/article/details/6275762

            Gossip算法因為Cassandra而名聲大噪,Gossip看似簡單,但要真正弄清楚其本質遠沒看起來那么容易。為了尋求Gossip的本質,下面的內容主要參考Gossip的原始論文:<<Efficient Reconciliation and Flow Control for Anti-Entropy Protocols>>。

             

            1. Gossip背景

            Gossip算法如其名,靈感來自辦公室八卦,只要一個人八卦一下,在有限的時間內所有的人都會知道該八卦的信息,這種方式也與病毒傳播類似,因此Gossip有眾多的別名“閑話算法”、“疫情傳播算法”、“病毒感染算法”、“謠言傳播算法”。

            但Gossip并不是一個新東西,之前的泛洪查找、路由算法都歸屬于這個范疇,不同的是Gossip給這類算法提供了明確的語義、具體實施方法及收斂性證明。

            2. Gossip特點

            Gossip算法又被稱為反熵(Anti-Entropy),熵是物理學上的一個概念,代表雜亂無章,而反熵就是在雜亂無章中尋求一致,這充分說明了Gossip的特點:在一個有界網絡中,每個節點都隨機地與其他節點通信,經過一番雜亂無章的通信,最終所有節點的狀態都會達成一致。每個節點可能知道所有其他節點,也可能僅知道幾個鄰居節點,只要這些節可以通過網絡連通,最終他們的狀態都是一致的,當然這也是疫情傳播的特點。

            要注意到的一點是,即使有的節點因宕機而重啟,有新節點加入,但經過一段時間后,這些節點的狀態也會與其他節點達成一致,也就是說,Gossip天然具有分布式容錯的優點。

            3. Gossip本質

            Gossip是一個帶冗余的容錯算法,更進一步,Gossip是一個最終一致性算法。雖然無法保證在某個時刻所有節點狀態一致,但可以保證在”最終“所有節點一致,”最終“是一個現實中存在,但理論上無法證明的時間點。

            因為Gossip不要求節點知道所有其他節點,因此又具有去中心化的特點,節點之間完全對等,不需要任何的中心節點。實際上Gossip可以用于眾多能接受“最終一致性”的領域:失敗檢測、路由同步、Pub/Sub、動態負載均衡。

            但Gossip的缺點也很明顯,冗余通信會對網路帶寬、CUP資源造成很大的負載,而這些負載又受限于通信頻率,該頻率又影響著算法收斂的速度,后面我們會講在各種場合下的優化方法。

            4. Gossip節點的通信方式及收斂性

            根據原論文,兩個節點(A、B)之間存在三種通信方式:

            • push: A節點將數據(key,value,version)及對應的版本號推送給B節點,B節點更新A中比自己新的數據
            • pull:A僅將數據key,version推送給B,B將本地比A新的數據(Key,value,version)推送給A,A更新本地
            • push/pull:與pull類似,只是多了一步,A再將本地比B新的數據推送給B,B更新本地

            如果把兩個節點數據同步一次定義為一個周期,則在一個周期內,push需通信1次,pull需2次,push/pull則需3次,從效果上來講,push/pull最好,理論上一個周期內可以使兩個節點完全一致。直觀上也感覺,push/pull的收斂速度是最快的。

            假設每個節點通信周期都能選擇(感染)一個新節點,則Gossip算法退化為一個二分查找過程,每個周期構成一個平衡二叉樹,收斂速度為O(n2 ),對應的時間開銷則為O(logn )。這也是Gossip理論上最優的收斂速度。但在實際情況中最優收斂速度是很難達到的,假設某個節點在第i個周期被感染的概率為pi ,第i+1個周期被感染的概率為pi+1 ,則pull的方式:

            pull

            而push為:

            push

            顯然pull的收斂速度大于push,而每個節點在每個周期被感染的概率都是固定的p(0<p<1),因此Gossip算法是基于p的平方收斂,也成為概率收斂,這在眾多的一致性算法中是非常獨特的。

            個Gossip的節點的工作方式又分兩種:

            • Anti-Entropy(反熵):以固定的概率傳播所有的數據
            • Rumor-Mongering(謠言傳播):僅傳播新到達的數據

            Anti-Entropy模式有完全的容錯性,但有較大的網絡、CPU負載;Rumor-Mongering模式有較小的網絡、CPU負載,但必須為數據定義”最新“的邊界,并且難以保證完全容錯,對失敗重啟且超過”最新“期限的節點,無法保證最終一致性,或需要引入額外的機制處理不一致性。我們后續著重討論Anti-Entropy模式的優化。

            5. Anti-Entropy的協調機制

            協調機制是討論在每次2個節點通信時,如何交換數據能達到最快的一致性,也即消除兩個節點的不一致性。上面所講的push、pull等是通信方式,協調是在通信方式下的數據交換機制。協調所面臨的最大問題是,因為受限于網絡負載,不可能每次都把一個節點上的數據發送給另外一個節點,也即每個Gossip的消息大小都有上限。在有限的空間上有效率地交換所有的消息是協調要解決的主要問題。

            在討論之前先聲明幾個概念:

            • 令N = {p,q,s,...}為需要gossip通信的server集合,有界大小
            • 令(p1,p2,...)是宿主在節點p上的數據,其中數據有(key,value,version)構成,q的規則與p類似。

            為了保證一致性,規定數據的value及version只有宿主節點才能修改,其他節點只能間接通過Gossip協議來請求數據對應的宿主節點修改。

            5.1 精確協調(Precise Reconciliation)

            精確協調希望在每次通信周期內都非常準確地消除雙方的不一致性,具體表現為相互發送對方需要更新的數據,因為每個節點都在并發與多個節點通信,理論上精確協調很難做到。精確協調需要給每個數據項獨立地維護自己的version,在每次交互是把所有的(key,value,version)發送到目標進行比對,從而找出雙方不同之處從而更新。但因為Gossip消息存在大小限制,因此每次選擇發送哪些數據就成了問題。當然可以隨機選擇一部分數據,也可確定性的選擇數據。對確定性的選擇而言,可以有最老優先(根據版本)和最新優先兩種,最老優先會優先更新版本最新的數據,而最新更新正好相反,這樣會造成老數據始終得不到機會更新,也即饑餓。

            當然,開發這也可根據業務場景構造自己的選擇算法,但始終都無法避免消息量過多的問題。

            5.2 整體協調(Scuttlebutt Reconciliation)

            整體協調與精確協調不同之處是,整體協調不是為每個數據都維護單獨的版本號,而是為每個節點上的宿主數據維護統一的version。比如節點P會為(p1,p2,...)維護一個一致的全局version,相當于把所有的宿主數據看作一個整體,當與其他節點進行比較時,只需必須這些宿主數據的最高version,如果最高version相同說明這部分數據全部一致,否則再進行精確協調。

            整體協調對數據的選擇也有兩種方法:

            • 廣度優先:根據整體version大小排序,也稱為公平選擇
            • 深度優先:根據包含數據多少的排序,也稱為非公平選擇。因為后者更有實用價值,所以原論文更鼓勵后者

            6. Cassandra中的實現

            經過驗證,Cassandra實現了基于整體協調的push/push模式,有幾個組件:

            三條消息分別對應push/pull的三個階段:

            • GossipDigitsMessage
            • GossipDigitsAckMessage
            • GossipDigitsAck2Message

            還有三種狀態:

            • EndpointState:維護宿主數據的全局version,并封裝了HeartBeat和ApplicationState
            • HeartBeat:心跳信息
            • ApplicationState:系統負載信息(磁盤使用率)

            Cassandra主要是使用Gossip完成三方面的功能:

            • 失敗檢測
            • 動態負載均衡
            • 去中心化的彈性擴展

            7. 總結

            Gossip是一種去中心化、容錯而又最終一致性的絕妙算法,其收斂性不但得到證明還具有指數級的收斂速度。使用Gossip的系統可以很容易的把Server擴展到更多的節點,滿足彈性擴展輕而易舉。

            唯一的缺點是收斂是最終一致性,不使用那些強一致性的場景,比如2pc。

            posted on 2015-10-01 18:42 楊粼波 閱讀(580) 評論(0)  編輯 收藏 引用

            久久久亚洲AV波多野结衣| 日本久久久久久中文字幕| 久久综合伊人77777麻豆| 青青热久久国产久精品 | 性做久久久久久久久久久| 伊人久久一区二区三区无码| 久久综合九色综合网站| 国产亚洲精久久久久久无码| 91久久精品国产免费直播| 亚洲国产成人久久一区WWW| 亚洲AV乱码久久精品蜜桃| 国产99久久九九精品无码| 国内精品伊人久久久久777| 久久久久久狠狠丁香| 亚洲国产视频久久| 日本久久久精品中文字幕| 久久久久亚洲av成人网人人软件| 免费观看久久精彩视频| 亚洲精品99久久久久中文字幕 | 久久A级毛片免费观看| 久久久久成人精品无码 | 99热热久久这里只有精品68| 免费无码国产欧美久久18| 99久久人人爽亚洲精品美女| 一本色道久久88精品综合| 欧美性大战久久久久久| 狠狠综合久久综合中文88| 久久久久久狠狠丁香| 国产亚洲婷婷香蕉久久精品| 中文字幕无码免费久久| 亚洲精品第一综合99久久| 亚洲伊人久久成综合人影院| 999久久久国产精品| 97r久久精品国产99国产精| 亚洲va中文字幕无码久久不卡| 久久国内免费视频| 婷婷久久综合| 中文字幕无码久久久| 亚洲AⅤ优女AV综合久久久| 亚洲欧美久久久久9999| 亚洲人成无码www久久久|