一、光收發一體模塊定義
光收發一體模塊由光電子器件、功能電路和光接口等組成,光電子器件包括發射和接收兩部分。發射部分是:輸入一定碼率的電信號經內部的驅動芯片處理后驅動半導體激光器(LD)或發光二極管(LED)發射出相應速率的調制光信號,其內部帶有光功率自動控制電路,使輸出的光信號功率保持穩定。接收部分是:一定碼率的光信號輸入模塊后由光探測二極管轉換為電信號。經前置放大器后輸出相應碼率的電信號,輸出的信號一般為PECL電平。同時在輸入光功率小于一定值后會輸出一個告警信號。
二、光收發一體模塊分類
按照速率分:以太網應用的100Base(百兆)、1000Base(千兆)、10GE SDH應用的155M、622M、2.5G、10G
按照封裝分:1×9、SFF、SFP、GBIC、XENPAK、XFP,各種封裝見圖1~6
1×9封裝--焊接型光模塊,一般速度不高于千兆,多采用SC接口
SFF封裝--焊接小封裝光模塊,一般速度不高于千兆,多采用LC接口 。SFF(Small Form Factor)小封裝光模塊采用了先進的精密光學及電路集成工藝,尺寸只有普通雙工SC(1X9)型光纖收發模塊的一半,在同樣空間可以增加一倍的光端口數,可以增加線路端口密度,降低每端口的系統成本。又由于SFF小封裝模塊采用了與銅線網絡類似的MT-RJ接口,大小與常見的電腦網絡銅線接口相同,有利于現有以銅纜為主的網絡設備過渡到更高速率的光纖網絡以滿足網絡帶寬需求的急劇增長。
GBIC封裝--熱插拔千兆接口光模塊,采用SC接口 。GBIC是Giga Bitrate Interface Converter的縮寫,是將千兆位電信號轉換為光信號的接口器件。GBIC設計上可以為熱插拔使用。GBIC是一種符合國際標準的可互換產品。采用 GBIC接口設計的千兆位交換機由于互換靈活,在市場上占有較大的市場分額。
SFP封裝--熱插拔小封裝模塊,目前最高數率可達4G,多采用LC接口 。SFP是SMALL FORM PLUGGABLE的縮寫,可以簡單的理解為GBIC的升級版本。SFP模塊體積比GBIC模塊減少一半,可以在相同的面板上配置多出一倍以上的端口數 量。SFP模塊的其他功能基本和GBIC一致。有些交換機廠商稱SFP模塊為小型化GBIC(MINI-GBIC)
XENPAK封裝--應用在萬兆以太網,采用SC接口
XFP封裝--10G光模塊,可用在萬兆以太網,SONET等多種系統,多采用LC接口
1.發展的方向之一:小型化
光收發模塊作為光纖接入網的核心器件推動了干線光傳輸系統向低成本方向發展,使得光網絡的配置更加完備合理。光收發模塊由光電子器件、功能電路和光接口等結構件組成,光電子器件包括發射和接收兩部分,發射部分包括LED、VCSEL、FP LD、DFB LD等幾種光源;接收部分包括PIN型和APD型兩種光探測器。
類型 |
|
工作波長 (nm) |
特點 |
LED |
Light Emitting |
850 |
低成本,性能一般,只能用于100M左右低速傳輸 |
FP |
Fabry-Perot Laser |
1310 |
通用,性能尚可,可用于中距離高速傳輸 |
DFB |
Distribution-Feedback Leaser |
1310 |
成本較高,能提供較高功率,用于長途傳輸 |
1550 |
VCSEL |
Verical Cavity Suface Emitting Laser |
850 |
生產成本低,短距離傳輸,可用于高速 |
1310 |
EML |
Electro-Absorption Modulator with Laser |
1310 |
成本很高,且需要提供較高的電壓,但可傳輸100KM以上的距離 |
1550 |
MZ |
Mach-Zender Modulator |
|
使用很少,工藝復雜 |
目前的光通信市場競爭越來越激烈,通信設備要求的體積越來越小,接口板包含的接口密度越來越高。傳統的激光器和探測器分離的光模塊,已經很難適應現代通信設備的要求。為了適應通信設備對光器件的要求,光模塊正向高度集成的小封裝發展。高度集成的光電模塊使用戶無須處理高速模擬光電信號,縮短研發和生產周期,減少元氣件采購種類,減少生產成本,因此也越來越受到設備制造商的青睞。
目前光收發模塊中的光電器件的封裝由較大尺寸的雙列直插形式為主發展為以同軸封裝形式為主;光接口等結構件從ST、FC發展到SC及更小尺寸的LC、MT-RJ型連接口形式,相應的光收發模塊的封裝形式也從金屬封裝發展到塑料封裝,由單接口的分離模塊發展到雙接口的收發一體模塊。管腳排列及封裝由雙列直插20腳、16腳分離模塊發展到單排9腳(1X9)、雙排9腳(2X9)以及今后的雙排10腳和雙排20腳的收發一體模塊。SFF(Small Form Factor)小封裝光模塊采用了先進的精密光學及電路集成工藝,尺寸只有普通雙工SC(1X9)型光纖收發模塊的一半,在同樣空間可以增加一倍的光端口數,可以增加線路端口密度,降低每端口的系統成本。又由于SFF小封裝模塊采用了與銅線網絡類似的MT-RJ接口,大小與常見的電腦網絡銅線接口相同,有利于現有以銅纜為主的網絡設備過渡到更高速率的光纖網絡以滿足網絡帶寬需求的急劇增長。
小封裝光收發模塊以其外觀封裝體積小的優勢,使網絡設備的光纖接口數目增加了一倍,單端口速率達到吉比特量級,能夠滿足INTERNET時代網絡帶寬需求的快速增長。可以說小封裝光收發模塊技術代表了新一代光通信器件的發展趨勢,是下一代高速網絡的基石。國外各大光模塊供應商已生產了各種用于不同速率和距離的小封裝光模塊,國內一些光器件供應商(像上海大亞光電)也開始研發和生產各速率SFF小封裝光模塊。
2.發展的方向之二:低成本、低功耗
通信設備的體積越來越小,接口板包含的接口密度越來越高,要求光電器件向低成本、低功耗的方向發展。
目前光器件一般均采用混合集成工藝和氣密封裝工藝,下一步的發展將是非氣密的封裝,需要依靠無源光耦合(非X-Y-Z方向的調整)等技術進一步提高自動化生產程度,降低成本。隨著光收發模塊市場需求的迅速增長,功能電路部分專用集成電路的供應商也逐漸增多,供應商在規模化、系列化方面的積極投資使得此類IC的性能越來越完善,成本也越來越低,從而縮短了光收發模塊的開發周期,降低了成本。尤其是處理高速、小信號、高增益的前置放大器采用的是GaAs工藝和技術,SiGe技術的發展,使得這類芯片的成品率及制造成本得到很好的控制,同時可進一步降低功耗。另外采用非制冷激光器也進一步降低了光模塊的制造成本。目前的小封裝光模塊也都采用低電壓3.3v供電,保證了端口的增加不會提高系統的功耗。
3.發展的方向之三:高速率
人們對信息量要求越來越多,對信息傳遞速率要求越來越快,作為現代信息交換、處理和傳輸主要支柱的光通信網,一直不斷向超高頻、超高速和超大容量發展,傳輸速率越高、容量越大,傳送每個信息的成本就越來越小。長途大容量方面當前的熱點是10 Gbit/s 和40Gbit/s,據ElectroniCast最新的市場研究,10 Gbit/s數據通信收發模塊的全球總消費量將從2001年的1.57億美元增長到2010年的90億美元。2001年早期使用10 Gbit/s數據通信收發器的數量不到10萬個,但到2003年,10 Gbit/s數據通信收發模塊將增加到200萬個。在接下來的幾年內仍將會猛烈增長,2005年將會達到700萬個。在整個消費領域,繼10-gigabit 光纖通道之后,10-gigabit以太網將會有強烈的影響。目前SDH單通道光系統正向40Gbit/s沖擊。高速系統和器件方面,很多公司今年推出了40Gbit/s系統。40Gbit/s方面目前的重點產品技術是:大功率波長可調/固定激光器、 40G調制器(Inp EAM、LiNbO3EOM、Polymer EOM)、高速電路(InP、GeSi材料)、波長鎖定器、低色散濾波器、動態均衡器、喇曼放大器、低色散開關、40Gbit/sPD(PIN、APD)、可調色散補償器組件(TU-DCM),前向糾誤(FEC)等。
從現階段電路技術來說,40Gbit/s已接近“電子瓶頸”的極限。速率再高,引起的信號損耗、功率耗散、電磁輻射(干擾)和阻抗匹配等問題難以解決,即使解決,則要花費非常大的代價。
4.發展的方向之四:遠距離
光收發模塊的另一個發展方向是遠距離。如今的光網絡鋪設距離越來越遠,這要求遠程收發器來與之匹配。典型的遠程收發器信號在未經放大的條件下至少能傳輸100公里,其目的主要是省掉昂貴的光放大器,降低光通訊的成本。基于傳輸距離上的考慮,很多遠程收發器都選擇了1550波段(波長范圍約為1530到1565nm)作為工作波段,因為光波在該范圍內傳輸時損耗最小,而且可用的光放大器都是工作在該波段。
5.發展的方向之五:熱插拔
未來的光模塊必須支持熱插拔,即無需切斷電源,模塊即可以與設備連接或斷開,由于光模塊是熱插拔式的,網絡管理人員無需關閉網絡就可升級和擴展系統,對在線用戶不會造成什么影響。熱插拔性也簡化了總的維護工作,并使得最終用戶能夠更好地管理他們的收發模塊。同時,由于這種熱交換性能,該模塊可使網絡管理人員能夠根據網絡升級要求,對收發成本、鏈路距離以及所有的網絡拓撲進行總體規劃,而無需對系統板進行全部替換。支持這熱插拔的光模塊目前有GBIC和SFP(Small Form pluggable),由于SFP與SFF的外型大小差不多,它可以直接插在電路板上,在封裝上較省空間與時間,且應用面相當廣,因此,其未來發展很值得期待,甚至有可能威脅到SFF的市場。
光纖是如何工作的? [/b]
通訊用光纖由外覆塑料保護層的細如毛發的玻璃絲組成。玻璃絲實質上由兩部分組成:核心直徑為9到62.5µm,外覆直徑為125µm的低折射率的玻璃材料。 雖然按所用的材料及不同的尺寸而分還有一些其它種類的光纖,但這里提到的是最常見的那幾種。光在光纖的芯層部分以“全內反射”方式進行傳輸,也就是指光線 進入光纖的一端后,在芯層和包層界面之間來回反射,進而傳輸到光纖另一端。芯徑為62.5µm,包層外徑為125µm的光纖稱為62.5/125µm 光纖。
[b]2. 多模和單模的區別是什么? [/b]
[b]多模: [/b]
幾乎所有的多模光纖尺寸均為50/125µm或62.5/125µm,并且帶寬(光纖的信息傳輸量)通常為200MHz到2GHz。多模光端機通過多模光纖可進行長達5公里的傳輸。以發光二極管或激光器為光源。
[b]單模: [/b]
單模光纖的尺寸為9-10/125µm,并且較之多模光纖具有無限量帶寬和更低損耗的特性。而單模光端機多用于長距離傳輸,有時可達到150至200公里。采用LD或光譜線較窄的LED作為光源。
[b]區別與聯系: [/b]
單模光纖價格便宜,但單模設備較之同類的 多模設備卻昂貴很多。單模設備通常既可在單模光纖上運行,亦可在多模光纖上運行,而多模設備只限于在多模光纖上運行。
[b]3. 使用光纜時傳輸損耗如何? [/b]
這取決于傳輸光的波長以及所使用光纖的種類。
850nm波長用于多模光纖時: 3.0分貝/公里
1310nm波長用于多模光纖時: 1.0分貝/公里
1310nm波長用于單模光纖時: 0.4分貝/公里
1550nm波長用于單模光纖時: 0.2分貝/公里
[b]網絡連接設備接口類型[/b]
[b]BNC接口[/b]
BNC接口是指同軸電纜接口,BNC接口用于75歐同軸電纜連接用,提供收(RX)、發(TX)兩個通道,它用于非平衡信號的連接。
[b]光纖接口[/b]
光纖接口是用來連接光纖線纜的物理接口。通常有SC、ST、LC、FC等幾種類型。對于10Base-F連接來說,連接器通常是ST類型,另一端FC連的是光纖步線架。FC是Ferrule Connector的縮寫,其外部加強方式是采用金屬套,緊固方式為螺絲扣。ST接口通常用于10Base-F,SC接口通常用于100Base-FX和GBIC,LC通常用于SFP 。
[b]RJ-45接口[/b]
RJ-45接口是以太網最為常用的接口,RJ-45是一個常用名稱,指的是由IEC(60)603-7標準化,使用由國際性的接插件標準定義的8個位置(8針)的模塊化插孔或者插頭。
[b]RS-232接口[/b]
RS-232-C接口(又稱 EIA RS-232-C)是目前最常用的一種串行通訊接口。它是在1970年由美國電子工業協會(EIA)聯合貝爾系統、 調制解調器廠家及計算機終端生產廠家共同制定的用于串行通訊的標準。它的全名是“數據終端設備(DTE)和數據通訊設備(DCE)之間串行二進制數據交換 接口技術標準”。該標準規定采用一個25個腳的DB25連接器,對連接器的每個引腳的信號內容加以規定,還對各種信號的電平加以規定。
[b]RJ-11接口[/b]
RJ-11接口就是我們平時所說的電話線接口。RJ-11是用于西部電子公司(Western Electric)開發的接插件的通用名稱。其外形定義為6針的連接器件。原名為WExW,這里的x表示“活性”,觸點或者打線針。例如, WE6W 有全部6個觸點,編號1到6, WE4W 界面只使用4針,最外面的兩個觸點(1和6) 不用,WE2W 只使用中間兩針(即電話線接口用)。
以太網交換機常用的光模塊有SFP,GBIC,XFP,XENPAK。它們的英文全稱,中文名不常用,可以簡單了解下
SFP: Small Form-factor Pluggable transceiver ,小封裝可插拔收發器
GBIC :GigaBit Interface Converter,千兆以太網接口轉換器
XFP: 10-Gigabit small Form-factor Pluggable transceiver 萬兆以太網接口小封裝可插拔收發器
XENPAK: 10 Gigabit EtherNet Transceiver PAcKage萬兆以太網接口收發器集合封裝
通過diplay interface命令可以在軟件中顯示光模塊的端口類型信息,顯示格式為
XXXX_BASE_YY[_AAAA]_ZZZ[_BBBB],各字段含義如下表所示
字段名稱
含義
取值
取值說明
XXXX
光模塊支持的最高速率
10G
10GE
1000
1000M
100
100M
YY
傳輸距離
SX
短距
LX
中距
LH+傳輸距離
長距
T
電接口
ZZZ
連接器類型
SFP
SFP接口
GBIC
GBIC接口
XENPAK
XENPAK接口
XFP
XFP接口
AAAA
接口光纖類型
MM+中心波長
多模光纖
SM+中心波長
單模光纖
BBBB
附加特性(可選)
BIDI
單纖雙向模塊
CWDM
CWDM 模塊
STACK
堆疊模塊
對于沒有插入光模塊的接口,顯示為ZZZ_NO_CONNECTOR,其中ZZZ與上述連接器類型一致。
對于不能識別的光模塊,顯示為ZZZ_UNKNOWN_CONNECTOR,其中ZZZ與上述連接器類型一致。
對于無附加特性項的模塊,不顯示附加特性項
如:顯示以太網端口GigabitEthernet2/1/1的端口信息如下
[fabric-56]display intterface g2/1/1
GigabitEthernet2/1/1 current state : UP
IP Sending Frames' Format is PKTFMT_ETHNT_2, Hardware address is 00e0-fc10-4378
Media type is optical fiber, loopback not set
Port hardware type is 1000_BASE_SX_SFP
sx表示該端口為短距1000M SFP模塊
參數
含義
850nm 1310nm 1550nm
光波波長
100Mbps 1000Mbps
傳輸速率
10km 30km 70km
鏈路長度
SX LX
激光器類型(短波 長波)
SM MM
工作模式(單模 多模)
光纖連接器
光纖連接器由光纖和光纖兩端的插頭組成,插頭由插針和外圍的鎖緊結構組成。根據不同的鎖緊機制,光纖連接器可以分為FC型、SC型、LC型、ST型和MTRJ型。
FC連接器采用螺紋鎖緊機構,是發明較早、使用最多的一種光纖活動連接器。
SC是一種矩形的接頭,由NTT研制,不用螺紋連接,可直接插拔,與FC連接器相比具有操作空間小,使用方便。低端以太網產品非常常見。
LC是由LUCENT開發的一種Mini型的SC連接器,具有更小的體積,已廣泛在系統中使用,是今后光纖活動連接器發展的一個方向。低端以太網產品非常常見。
ST連接器是由AT&T公司開發的,用卡口式鎖緊機構,主要參數指標與FC和SC連接器相當,但在公司應用并不普遍,通常都用在多模器件連接,與其它廠家設備對接時使用較多。
MTRJ的插針是塑料的,通過鋼針定位,隨著插拔次數的增加,各配合面會發生磨損,長期穩定性不如陶瓷插針連接器。
光纖知識
光纖是傳輸光波的導體。光纖從光傳輸的模式來分可分為單模光纖和多模光纖。
在單模光纖中光傳輸只有一種基模模式,也就是說光線只沿光纖的內芯進行傳輸。由于完全避免了模式射散使得單模光纖的傳輸頻帶很寬因而適用與高速,長距離的光纖通迅。
在多模光纖中光傳輸有多個模式,由于色散或像差,這種光纖的傳輸性能較差,頻帶窄,傳輸速率較小,距離較短。
光纖的特性參數
光纖的結構預制的石英光纖棒拉制而成,通信用的多模光纖和單模光纖的外徑都為125μm。
纖體分為兩個區域:纖芯(Core)和包層(Cladding layer)。單模光纖纖芯直徑為8~10μm,多模光纖纖芯徑有兩種標準規格,芯徑分別為62.5μm(美國標準)和50μm(歐洲標準)。
我們在用戶資料中經常看到對接口光纖規格有這樣的描述:62.5μm/125μm多模光纖,其中62.5μm就是指光纖的芯徑,125μm就是指光纖的外徑。
單模光纖使用的光波長為1310nm或1550 nm。
多模光纖使用的光波長多為850 nm。
從顏色上可以區分單模光纖和多模光纖。單模光纖外體為黃色,多模光纖外體為橘紅色。
千兆光口自協商
千兆光口可以工作在強制和自協商兩種模式。802.3規范中千兆光口只支持1000M速率,支持全雙工(Full)和半雙工(Half)兩種雙工模式。
自協商和強制最根本的區別就是兩者再建立物理鏈路時發送的碼流不同,自協商模式發送的是/C/碼,也就是配置(Configuration)碼流,而強制模式發送的是/I/碼,也就是idle碼流。
千兆光口自協商過程
一、兩端都設置為自協商模式
雙方互相發送/C/碼流,如果連續接收到3個相同的/C/碼且接收到的碼流和本端工作方式相匹配,則返回給對方一個帶有Ack應答的/C/碼,對端接收到Ack信息后,認為兩者可以互通,設置端口為UP狀態
二、一端設置為自協商,一端設置為強制
自協商端發送/C/碼流,強制端發送/I/碼流,強制端無法給對端提供本端的協商信息,也無法給對端返回Ack應答,故自協商端DOWN。但是強制端本身可以識別/C/碼,認為對端是與自己相匹配的端口,所以直接設置本端端口為UP狀態
三、兩端均設置為強制模式
雙方互相發送/I/碼流,一端接收到/I/碼流后,認為對端是與自己相匹配的端口,直接設置本端端口為UP狀態