深入淺出Win32多線程設計之MFC的多線程(ZT)
1、創建和終止線程

  在MFC程序中創建一個線程,宜調用AfxBeginThread函數。該函數因參數不同而具有兩種重載版本,分別對應工作者線程和用戶接口(UI)線程。

  工作者線程

CWinThread *AfxBeginThread(
 AFX_THREADPROC pfnThreadProc, //控制函數
 LPVOID pParam, //傳遞給控制函數的參數
 int nPriority = THREAD_PRIORITY_NORMAL, //線程的優先級
 UINT nStackSize = 0, //線程的堆棧大小
 DWORD dwCreateFlags = 0, //線程的創建標志
 LPSECURITY_ATTRIBUTES lpSecurityAttrs = NULL //線程的安全屬性
);

  工作者線程編程較為簡單,只需編寫線程控制函數和啟動線程即可。下面的代碼給出了定義一個控制函數和啟動它的過程:

//線程控制函數
UINT MfcThreadProc(LPVOID lpParam)
{
 CExampleClass *lpObject = (CExampleClass*)lpParam;
 if (lpObject == NULL || !lpObject->IsKindof(RUNTIME_CLASS(CExampleClass)))
  return - 1; //輸入參數非法
 //線程成功啟動
 while (1)
 {
  ...//
 }
 return 0;
}

//在MFC程序中啟動線程
AfxBeginThread(MfcThreadProc, lpObject);

  UI線程

  創建用戶界面線程時,必須首先從CWinThread 派生類,并使用 DECLARE_DYNCREATE 和 IMPLEMENT_DYNCREATE 宏聲明此類。

  下面給出了CWinThread類的原型(添加了關于其重要函數功能和是否需要被繼承類重載的注釋):

class CWinThread : public CCmdTarget
{
 DECLARE_DYNAMIC(CWinThread)

 public:
  // Constructors
  CWinThread();
  BOOL CreateThread(DWORD dwCreateFlags = 0, UINT nStackSize = 0,
LPSECURITY_ATTRIBUTES lpSecurityAttrs = NULL);

  // Attributes
  CWnd* m_pMainWnd; // main window (usually same AfxGetApp()->m_pMainWnd)
  CWnd* m_pActiveWnd; // active main window (may not be m_pMainWnd)
  BOOL m_bAutoDelete; // enables 'delete this' after thread termination

  // only valid while running
  HANDLE m_hThread; // this thread's HANDLE
  operator HANDLE() const;
  DWORD m_nThreadID; // this thread's ID

  int GetThreadPriority();
  BOOL SetThreadPriority(int nPriority);

  // Operations
  DWORD SuspendThread();
  DWORD ResumeThread();
  BOOL PostThreadMessage(UINT message, WPARAM wParam, LPARAM lParam);

  // Overridables
  //執行線程實例初始化,必須重寫
  virtual BOOL InitInstance();

  // running and idle processing
  //控制線程的函數,包含消息泵,一般不重寫
  virtual int Run();

  //消息調度到TranslateMessage和DispatchMessage之前對其進行篩選,
  //通常不重寫
  virtual BOOL PreTranslateMessage(MSG* pMsg);

  virtual BOOL PumpMessage(); // low level message pump

  //執行線程特定的閑置時間處理,通常不重寫
  virtual BOOL OnIdle(LONG lCount); // return TRUE if more idle processing
  virtual BOOL IsIdleMessage(MSG* pMsg); // checks for special messages

  //線程終止時執行清除,通常需要重寫
  virtual int ExitInstance(); // default will 'delete this'

  //截獲由線程的消息和命令處理程序引發的未處理異常,通常不重寫
  virtual LRESULT ProcessWndProcException(CException* e, const MSG* pMsg);

  // Advanced: handling messages sent to message filter hook
  virtual BOOL ProcessMessageFilter(int code, LPMSG lpMsg);

  // Advanced: virtual access to m_pMainWnd
  virtual CWnd* GetMainWnd();

  // Implementation
 public:
  virtual ~CWinThread();
  #ifdef _DEBUG
   virtual void AssertValid() const;
   virtual void Dump(CDumpContext& dc) const;
   int m_nDisablePumpCount; // Diagnostic trap to detect illegal re-entrancy
  #endif
  void CommonConstruct();
  virtual void Delete();
  // 'delete this' only if m_bAutoDelete == TRUE

  // message pump for Run
  MSG m_msgCur; // current message

 public:
  // constructor used by implementation of AfxBeginThread
  CWinThread(AFX_THREADPROC pfnThreadProc, LPVOID pParam);

  // valid after construction
  LPVOID m_pThreadParams; // generic parameters passed to starting function
  AFX_THREADPROC m_pfnThreadProc;

  // set after OLE is initialized
  void (AFXAPI* m_lpfnOleTermOrFreeLib)(BOOL, BOOL);
  COleMessageFilter* m_pMessageFilter;

 protected:
  CPoint m_ptCursorLast; // last mouse position
  UINT m_nMsgLast; // last mouse message
  BOOL DispatchThreadMessageEx(MSG* msg); // helper
  void DispatchThreadMessage(MSG* msg); // obsolete
};

  啟動UI線程的AfxBeginThread函數的原型為:

CWinThread *AfxBeginThread(
 //從CWinThread派生的類的 RUNTIME_CLASS
 CRuntimeClass *pThreadClass,
 int nPriority = THREAD_PRIORITY_NORMAL,
 UINT nStackSize = 0,
 DWORD dwCreateFlags = 0,
 LPSECURITY_ATTRIBUTES lpSecurityAttrs = NULL
);

  我們可以方便地使用VC++ 6.0類向導定義一個繼承自CWinThread的用戶線程類。下面給出產生我們自定義的CWinThread子類CMyUIThread的方法。

  打開VC++ 6.0類向導,在如下窗口中選擇Base Class類為CWinThread,輸入子類名為CMyUIThread,點擊"OK"按鈕后就產生了類CMyUIThread。


  其源代碼框架為:

/////////////////////////////////////////////////////////////////////////////
// CMyUIThread thread

class CMyUIThread : public CWinThread
{
 DECLARE_DYNCREATE(CMyUIThread)
 protected:
  CMyUIThread(); // protected constructor used by dynamic creation

  // Attributes
 public:

  // Operations
 public:

  // Overrides
  // ClassWizard generated virtual function overrides
  //{{AFX_VIRTUAL(CMyUIThread)
  public:
   virtual BOOL InitInstance();
   virtual int ExitInstance();
  //}}AFX_VIRTUAL

  // Implementation
 protected:
  virtual ~CMyUIThread();

  // Generated message map functions
  //{{AFX_MSG(CMyUIThread)
   // NOTE - the ClassWizard will add and remove member functions here.
  //}}AFX_MSG

 DECLARE_MESSAGE_MAP()
};

/////////////////////////////////////////////////////////////////////////////
// CMyUIThread

IMPLEMENT_DYNCREATE(CMyUIThread, CWinThread)

CMyUIThread::CMyUIThread()
{}

CMyUIThread::~CMyUIThread()
{}

BOOL CMyUIThread::InitInstance()
{
 // TODO: perform and per-thread initialization here
 return TRUE;
}

int CMyUIThread::ExitInstance()
{
 // TODO: perform any per-thread cleanup here
 return CWinThread::ExitInstance();
}

BEGIN_MESSAGE_MAP(CMyUIThread, CWinThread)
//{{AFX_MSG_MAP(CMyUIThread)
// NOTE - the ClassWizard will add and remove mapping macros here.
//}}AFX_MSG_MAP
END_MESSAGE_MAP()

  使用下列代碼就可以啟動這個UI線程:

CMyUIThread *pThread;
pThread = (CMyUIThread*)
AfxBeginThread( RUNTIME_CLASS(CMyUIThread) );

  另外,我們也可以不用AfxBeginThread 創建線程,而是分如下兩步完成:

 ?。?)調用線程類的構造函數創建一個線程對象;

 ?。?)調用CWinThread::CreateThread函數來啟動該線程。

  在線程自身內調用AfxEndThread函數可以終止該線程:

void AfxEndThread(
 UINT nExitCode //the exit code of the thread
);

  對于UI線程而言,如果消息隊列中放入了WM_QUIT消息,將結束線程。

  關于UI線程和工作者線程的分配,最好的做法是:將所有與UI相關的操作放入主線程,其它的純粹的運算工作交給獨立的數個工作者線程。

  候捷先生早些時間喜歡為MDI程序的每個窗口創建一個線程,他后來澄清了這個錯誤。因為如果為MDI程序的每個窗口都單獨創建一個線程,在窗口進行切換的時候,將進行線程的上下文切換!
2.線程間通信

  MFC中定義了繼承自CSyncObject類的CCriticalSection 、CCEvent、CMutex、CSemaphore類封裝和簡化了WIN32 API所提供的臨界區、事件、互斥和信號量。使用這些同步機制,必須包含"Afxmt.h"頭文件。下圖給出了類的繼承關系:


  作為CSyncObject類的繼承類,我們僅僅使用基類CSyncObject的接口函數就可以方便、統一的操作CCriticalSection 、CCEvent、CMutex、CSemaphore類,下面是CSyncObject類的原型:

class CSyncObject : public CObject
{
 DECLARE_DYNAMIC(CSyncObject)

 // Constructor
 public:
  CSyncObject(LPCTSTR pstrName);

  // Attributes
 public:
  operator HANDLE() const;
  HANDLE m_hObject;

  // Operations
  virtual BOOL Lock(DWORD dwTimeout = INFINITE);
  virtual BOOL Unlock() = 0;
  virtual BOOL Unlock(LONG /* lCount */, LPLONG /* lpPrevCount=NULL */)
  { return TRUE; }

  // Implementation
 public:
  virtual ~CSyncObject();
  #ifdef _DEBUG
   CString m_strName;
   virtual void AssertValid() const;
   virtual void Dump(CDumpContext& dc) const;
  #endif
  friend class CSingleLock;
  friend class CMultiLock;
};

  CSyncObject類最主要的兩個函數是Lock和Unlock,若我們直接使用CSyncObject類及其派生類,我們需要非常小心地在Lock之后調用Unlock。

  MFC提供的另兩個類CSingleLock(等待一個對象)和CMultiLock(等待多個對象)為我們編寫應用程序提供了更靈活的機制,下面以實際來闡述CSingleLock的用法:

class CThreadSafeWnd
{
 public:
  CThreadSafeWnd(){}
  ~CThreadSafeWnd(){}
  void SetWindow(CWnd *pwnd)
  {
   m_pCWnd = pwnd;
  }
  void PaintBall(COLORREF color, CRect &rc);
 private:
  CWnd *m_pCWnd;
  CCriticalSection m_CSect;
};

void CThreadSafeWnd::PaintBall(COLORREF color, CRect &rc)
{
 CSingleLock csl(&m_CSect);
 //缺省的Timeout是INFINITE,只有m_Csect被激活,csl.Lock()才能返回
 //true,這里一直等待
 if (csl.Lock())
;
 {
  // not necessary
  //AFX_MANAGE_STATE(AfxGetStaticModuleState( ));
  CDC *pdc = m_pCWnd->GetDC();
  CBrush brush(color);
  CBrush *oldbrush = pdc->SelectObject(&brush);
  pdc->Ellipse(rc);
  pdc->SelectObject(oldbrush);
  GdiFlush(); // don't wait to update the display
 }
}

  上述實例講述了用CSingleLock對Windows GDI相關對象進行保護的方法,下面再給出一個其他方面的例子:

int array1[10], array2[10];
CMutexSection section; //創建一個CMutex類的對象

//賦值線程控制函數
UINT EvaluateThread(LPVOID param)
{
 CSingleLock singlelock;
 singlelock(&section);

 //互斥區域
 singlelock.Lock();
 for (int i = 0; i < 10; i++)
  array1[i] = i;
 singlelock.Unlock();
}
//拷貝線程控制函數
UINT CopyThread(LPVOID param)
{
 CSingleLock singlelock;
 singlelock(&section);

 //互斥區域
 singlelock.Lock();
 for (int i = 0; i < 10; i++)
  array2[i] = array1[i];
 singlelock.Unlock();
}
}

AfxBeginThread(EvaluateThread, NULL); //啟動賦值線程
AfxBeginThread(CopyThread, NULL); //啟動拷貝線程

   上面的例子中啟動了兩個線程EvaluateThread和CopyThread,線程EvaluateThread把10個數賦值給數組array1 [],線程CopyThread將數組array1[]拷貝給數組array2[]。由于數組的拷貝和賦值都是整體行為,如果不以互斥形式執行代碼段:

for (int i = 0; i < 10; i++)
array1[i] = i;

  和

for (int i = 0; i < 10; i++)
array2[i] = array1[i];

  其結果是很難預料的!

  除了可使用CCriticalSection、CEvent、CMutex、CSemaphore作為線程間同步通信的方式以外,我們還可以利用PostThreadMessage函數在線程間發送消息:

BOOL PostThreadMessage(DWORD idThread, // thread identifier
UINT Msg, // message to post
WPARAM wParam, // first message parameter
LPARAM lParam // second message parameter
);
3.線程與消息隊列

  在WIN32中,每一個線程都對應著一個消息隊列。由于一個線程可以產生數個窗口,所以并不是每個窗口都對應著一個消息隊列。下列幾句話應該作為"定理"被記?。?br />
  "定理" 一

  所有產生給某個窗口的消息,都先由創建這個窗口的線程處理;

  "定理" 二

  Windows屏幕上的每一個控件都是一個窗口,有對應的窗口函數。

  消息的發送通常有兩種方式,一是SendMessage,一是PostMessage,其原型分別為:

LRESULT SendMessage(HWND hWnd, // handle of destination window
 UINT Msg, // message to send
 WPARAM wParam, // first message parameter
 LPARAM lParam // second message parameter
);
BOOL PostMessage(HWND hWnd, // handle of destination window
 UINT Msg, // message to post
 WPARAM wParam, // first message parameter
 LPARAM lParam // second message parameter
);

   兩個函數原型中的四個參數的意義相同,但是SendMessage和PostMessage的行為有差異。SendMessage必須等待消息被處理后 才返回,而PostMessage僅僅將消息放入消息隊列。SendMessage的目標窗口如果屬于另一個線程,則會發生線程上下文切換,等待另一線程 處理完成消息。為了防止另一線程當掉,導致SendMessage永遠不能返回,我們可以調用SendMessageTimeout函數:

LRESULT SendMessageTimeout(
 HWND hWnd, // handle of destination window
 UINT Msg, // message to send
 WPARAM wParam, // first message parameter
 LPARAM lParam, // second message parameter
 UINT fuFlags, // how to send the message
 UINT uTimeout, // time-out duration
 LPDWORD lpdwResult // return value for synchronous call
);

  4. MFC線程、消息隊列與MFC程序的"生死因果"

  分析MFC程序的主線程啟動及消息隊列處理的過程將有助于我們進一步理解UI線程與消息隊列的關系,為此我們需要簡單地敘述一下MFC程序的"生死因果"(侯捷:《深入淺出MFC》)。

  使用VC++ 6.0的向導完成一個最簡單的單文檔架構MFC應用程序MFCThread:

  (1) 輸入MFC EXE工程名MFCThread;

 ?。?) 選擇單文檔架構,不支持Document/View結構;

  (3) ActiveX、3D container等其他選項都選擇無。

  我們來分析這個工程。下面是產生的核心源代碼:

  MFCThread.h 文件

class CMFCThreadApp : public CWinApp
{
 public:
  CMFCThreadApp();

  // Overrides
  // ClassWizard generated virtual function overrides
  //{{AFX_VIRTUAL(CMFCThreadApp)
   public:
    virtual BOOL InitInstance();
  //}}AFX_VIRTUAL

  // Implementation

 public:
  //{{AFX_MSG(CMFCThreadApp)
   afx_msg void OnAppAbout();
   // NOTE - the ClassWizard will add and remove member functions here.
   // DO NOT EDIT what you see in these blocks of generated code !
  //}}AFX_MSG
 DECLARE_MESSAGE_MAP()
};

  MFCThread.cpp文件

CMFCThreadApp theApp;

/////////////////////////////////////////////////////////////////////////////
// CMFCThreadApp initialization

BOOL CMFCThreadApp::InitInstance()
{
 …
 CMainFrame* pFrame = new CMainFrame;
 m_pMainWnd = pFrame;

 // create and load the frame with its resources
 pFrame->LoadFrame(IDR_MAINFRAME,WS_OVERLAPPEDWINDOW | FWS_ADDTOTITLE, NULL,NULL);
 // The one and only window has been initialized, so show and update it.
 pFrame->ShowWindow(SW_SHOW);
 pFrame->UpdateWindow();

 return TRUE;
}

  MainFrm.h文件

#include "ChildView.h"

class CMainFrame : public CFrameWnd
{
 public:
  CMainFrame();
 protected:
  DECLARE_DYNAMIC(CMainFrame)

  // Attributes
 public:

  // Operations
 public:
  // Overrides
  // ClassWizard generated virtual function overrides
  //{{AFX_VIRTUAL(CMainFrame)
   virtual BOOL PreCreateWindow(CREATESTRUCT& cs);
   virtual BOOL OnCmdMsg(UINT nID, int nCode, void* pExtra, AFX_CMDHANDLERINFO* pHandlerInfo);
  //}}AFX_VIRTUAL

  // Implementation
 public:
  virtual ~CMainFrame();
  #ifdef _DEBUG
   virtual void AssertValid() const;
   virtual void Dump(CDumpContext& dc) const;
  #endif
  CChildView m_wndView;

  // Generated message map functions
 protected:
 //{{AFX_MSG(CMainFrame)
  afx_msg void OnSetFocus(CWnd *pOldWnd);
  // NOTE - the ClassWizard will add and remove member functions here.
  // DO NOT EDIT what you see in these blocks of generated code!
 //}}AFX_MSG
 DECLARE_MESSAGE_MAP()
};

  MainFrm.cpp文件

IMPLEMENT_DYNAMIC(CMainFrame, CFrameWnd)

BEGIN_MESSAGE_MAP(CMainFrame, CFrameWnd)
 //{{AFX_MSG_MAP(CMainFrame)
  // NOTE - the ClassWizard will add and remove mapping macros here.
  // DO NOT EDIT what you see in these blocks of generated code !
  ON_WM_SETFOCUS()
 //}}AFX_MSG_MAP
END_MESSAGE_MAP()

/////////////////////////////////////////////////////////////////////////////
// CMainFrame construction/destruction

CMainFrame::CMainFrame()
{
 // TODO: add member initialization code here
}

CMainFrame::~CMainFrame()
{}

BOOL CMainFrame::PreCreateWindow(CREATESTRUCT& cs)
{
 if( !CFrameWnd::PreCreateWindow(cs) )
  return FALSE;
  // TODO: Modify the Window class or styles here by modifying
  // the CREATESTRUCT cs

 cs.dwExStyle &= ~WS_EX_CLIENTEDGE;
 cs.lpszClass = AfxRegisterWndClass(0);
 return TRUE;
}

  ChildView.h文件

// CChildView window

class CChildView : public CWnd
{
 // Construction
 public:
  CChildView();

  // Attributes
 public:
  // Operations
 public:
  // Overrides
  // ClassWizard generated virtual function overrides
  //{{AFX_VIRTUAL(CChildView)
   protected:
    virtual BOOL PreCreateWindow(CREATESTRUCT& cs);
  //}}AFX_VIRTUAL

  // Implementation
 public:
  virtual ~CChildView();

  // Generated message map functions
 protected:
  //{{AFX_MSG(CChildView)
   afx_msg void OnPaint();
  //}}AFX_MSG
 DECLARE_MESSAGE_MAP()
};

ChildView.cpp文件
// CChildView

CChildView::CChildView()
{}

CChildView::~CChildView()
{}

BEGIN_MESSAGE_MAP(CChildView,CWnd )
//{{AFX_MSG_MAP(CChildView)
ON_WM_PAINT()
//}}AFX_MSG_MAP
END_MESSAGE_MAP()

/////////////////////////////////////////////////////////////////////////////
// CChildView message handlers

BOOL CChildView::PreCreateWindow(CREATESTRUCT& cs)
{
 if (!CWnd::PreCreateWindow(cs))
  return FALSE;

 cs.dwExStyle |= WS_EX_CLIENTEDGE;
 cs.style &= ~WS_BORDER;
 cs.lpszClass = AfxRegisterWndClass(CS_HREDRAW|CS_VREDRAW|CS_DBLCLKS,::LoadCursor(NULL, IDC_ARROW),
HBRUSH(COLOR_WINDOW+1),NULL);

 return TRUE;
}

void CChildView::OnPaint()
{
 CPaintDC dc(this); // device context for painting

 // TODO: Add your message handler code here
 // Do not call CWnd::OnPaint() for painting messages
}

   文件MFCThread.h和MFCThread.cpp定義和實現的類CMFCThreadApp繼承自CWinApp類,而CWinApp類又繼承 自CWinThread類(CWinThread類又繼承自CCmdTarget類),所以CMFCThread本質上是一個MFC線程類,下圖給出了相 關的類層次結構:

我們提取CWinApp類原型的一部分:

class CWinApp : public CWinThread
{
 DECLARE_DYNAMIC(CWinApp)
 public:
  // Constructor
  CWinApp(LPCTSTR lpszAppName = NULL);// default app name
  // Attributes
  // Startup args (do not change)
  HINSTANCE m_hInstance;
  HINSTANCE m_hPrevInstance;
  LPTSTR m_lpCmdLine;
  int m_nCmdShow;
  // Running args (can be changed in InitInstance)
  LPCTSTR m_pszAppName; // human readable name
  LPCTSTR m_pszExeName; // executable name (no spaces)
  LPCTSTR m_pszHelpFilePath; // default based on module path
  LPCTSTR m_pszProfileName; // default based on app name

  // Overridables
  virtual BOOL InitApplication();
  virtual BOOL InitInstance();
  virtual int ExitInstance(); // return app exit code
  virtual int Run();
  virtual BOOL OnIdle(LONG lCount); // return TRUE if more idle processing
  virtual LRESULT ProcessWndProcException(CException* e,const MSG* pMsg);

 public:
  virtual ~CWinApp();
 protected:
  DECLARE_MESSAGE_MAP()
};

  SDK程序的WinMain 所完成的工作現在由CWinApp 的三個函數完成:

virtual BOOL InitApplication();
virtual BOOL InitInstance();
virtual int Run();

   "CMFCThreadApp theApp;"語句定義的全局變量theApp是整個程式的application object,每一個MFC 應用程序都有一個。當我們執行MFCThread程序的時候,這個全局變量被構造。theApp 配置完成后,WinMain開始執行。但是程序中并沒有WinMain的代碼,它在哪里呢?原來MFC早已準備好并由Linker直接加到應用程序代碼中 的,其原型為(存在于VC++6.0安裝目錄下提供的APPMODUL.CPP文件中):

extern "C" int WINAPI
_tWinMain(HINSTANCE hInstance, HINSTANCE hPrevInstance,
LPTSTR lpCmdLine, int nCmdShow)
{
 // call shared/exported WinMain
 return AfxWinMain(hInstance, hPrevInstance, lpCmdLine, nCmdShow);
}

  其中調用的AfxWinMain如下(存在于VC++6.0安裝目錄下提供的WINMAIN.CPP文件中):

int AFXAPI AfxWinMain(HINSTANCE hInstance, HINSTANCE hPrevInstance,
LPTSTR lpCmdLine, int nCmdShow)
{
 ASSERT(hPrevInstance == NULL);

 int nReturnCode = -1;
 CWinThread* pThread = AfxGetThread();
 CWinApp* pApp = AfxGetApp();

 // AFX internal initialization
 if (!AfxWinInit(hInstance, hPrevInstance, lpCmdLine, nCmdShow))
  goto InitFailure;

 // App global initializations (rare)
 if (pApp != NULL && !pApp->InitApplication())
  goto InitFailure;

 // Perform specific initializations
 if (!pThread->InitInstance())
 {
  if (pThread->m_pMainWnd != NULL)
  {
   TRACE0("Warning: Destroying non-NULL m_pMainWnd\n");
   pThread->m_pMainWnd->DestroyWindow();
  }
  nReturnCode = pThread->ExitInstance();
  goto InitFailure;
 }
 nReturnCode = pThread->Run();

 InitFailure:
 #ifdef _DEBUG
  // Check for missing AfxLockTempMap calls
  if (AfxGetModuleThreadState()->m_nTempMapLock != 0)
  {
   TRACE1("Warning: Temp map lock count non-zero (%ld).\n",
AfxGetModuleThreadState()->m_nTempMapLock);
  }
  AfxLockTempMaps();
  AfxUnlockTempMaps(-1);
 #endif

 AfxWinTerm();
 return nReturnCode;
}

  我們提取主干,實際上,這個函數做的事情主要是:

CWinThread* pThread = AfxGetThread();
CWinApp* pApp = AfxGetApp();
AfxWinInit(hInstance, hPrevInstance, lpCmdLine, nCmdShow)
pApp->InitApplication()
pThread->InitInstance()
pThread->Run();

   其中,InitApplication 是注冊窗口類別的場所;InitInstance是產生窗口并顯示窗口的場所;Run是提取并分派消息的場所。這樣,MFC就同WIN32 SDK程序對應起來了。CWinThread::Run是程序生命的"活水源頭"(侯捷:《深入淺出MFC》,函數存在于VC++ 6.0安裝目錄下提供的THRDCORE.CPP文件中):

// main running routine until thread exits
int CWinThread::Run()
{
 ASSERT_VALID(this);

 // for tracking the idle time state
 BOOL bIdle = TRUE;
 LONG lIdleCount = 0;

 // acquire and dispatch messages until a WM_QUIT message is received.
 for (;;)
 {
  // phase1: check to see if we can do idle work
  while (bIdle && !::PeekMessage(&m_msgCur, NULL, NULL, NULL, PM_NOREMOVE))
  {
   // call OnIdle while in bIdle state
   if (!OnIdle(lIdleCount++))
    bIdle = FALSE; // assume "no idle" state
  }

  // phase2: pump messages while available
  do
  {
   // pump message, but quit on WM_QUIT
   if (!PumpMessage())
    return ExitInstance();

   // reset "no idle" state after pumping "normal" message
   if (IsIdleMessage(&m_msgCur))
   {
    bIdle = TRUE;
    lIdleCount = 0;
   }

  } while (::PeekMessage(&m_msgCur, NULL, NULL, NULL, PM_NOREMOVE));
 }
 ASSERT(FALSE); // not reachable
}

  其中的PumpMessage函數又對應于:

/////////////////////////////////////////////////////////////////////////////
// CWinThread implementation helpers

BOOL CWinThread::PumpMessage()
{
 ASSERT_VALID(this);

 if (!::GetMessage(&m_msgCur, NULL, NULL, NULL))
 {
  return FALSE;
 }

 // process this message
 if(m_msgCur.message != WM_KICKIDLE && !PreTranslateMessage(&m_msgCur))
 {
  ::TranslateMessage(&m_msgCur);
  ::DispatchMessage(&m_msgCur);
 }
 return TRUE;
}

  因此,忽略IDLE狀態,整個RUN的執行提取主干就是:

do {
 ::GetMessage(&msg,...);
 PreTranslateMessage{&msg);
 ::TranslateMessage(&msg);
 ::DispatchMessage(&msg);
 ...
} while (::PeekMessage(...));

  由此,我們建立了MFC消息獲取和派生機制與WIN32 SDK程序之間的對應關系。下面繼續分析MFC消息的"繞行"過程。

   在MFC中,只要是CWnd 衍生類別,就可以攔下任何Windows消息。與窗口無關的MFC類別(例如CDocument 和CWinApp)如果也想處理消息,必須衍生自CCmdTarget,并且只可能收到WM_COMMAND消息。所有能進行MESSAGE_MAP的類 都繼承自CCmdTarget,如:


  MFC中MESSAGE_MAP的定義依賴于以下三個宏:

DECLARE_MESSAGE_MAP()

BEGIN_MESSAGE_MAP(
 theClass, //Specifies the name of the class whose message map this is
 baseClass //Specifies the name of the base class of theClass
)

END_MESSAGE_MAP()

  我們程序中涉及到的有:MFCThread.h、MainFrm.h、ChildView.h文件

DECLARE_MESSAGE_MAP()
MFCThread.cpp文件
BEGIN_MESSAGE_MAP(CMFCThreadApp, CWinApp)
//{{AFX_MSG_MAP(CMFCThreadApp)
ON_COMMAND(ID_APP_ABOUT, OnAppAbout)
// NOTE - the ClassWizard will add and remove mapping macros here.
// DO NOT EDIT what you see in these blocks of generated code!
//}}AFX_MSG_MAP
END_MESSAGE_MAP()
MainFrm.cpp文件
BEGIN_MESSAGE_MAP(CMainFrame, CFrameWnd)
//{{AFX_MSG_MAP(CMainFrame)
// NOTE - the ClassWizard will add and remove mapping macros here.
// DO NOT EDIT what you see in these blocks of generated code !
ON_WM_SETFOCUS()
//}}AFX_MSG_MAP
END_MESSAGE_MAP()
ChildView.cpp文件
BEGIN_MESSAGE_MAP(CChildView,CWnd )
//{{AFX_MSG_MAP(CChildView)
ON_WM_PAINT()
//}}AFX_MSG_MAP
END_MESSAGE_MAP()

  由這些宏,MFC建立了一個消息映射表(消息流動網),按照消息流動網匹配對應的消息處理函數,完成整個消息的"繞行"。

  看到這里相信你有這樣的疑問:程序定義了CWinApp類的theApp全局變量,可是從來沒有調用AfxBeginThread或theApp.CreateThread啟動線程呀,theApp對應的線程是怎么啟動的?

  答:MFC在這里用了很高明的一招。實際上,程序開始運行,第一個線程是由操作系統(OS)啟動的,在CWinApp的構造函數里,MFC將theApp"對應"向了這個線程,具體的實現是這樣的:

CWinApp::CWinApp(LPCTSTR lpszAppName)
{
 if (lpszAppName != NULL)
  m_pszAppName = _tcsdup(lpszAppName);
 else
  m_pszAppName = NULL;

 // initialize CWinThread state
 AFX_MODULE_STATE *pModuleState = _AFX_CMDTARGET_GETSTATE();
 AFX_MODULE_THREAD_STATE *pThreadState = pModuleState->m_thread;
 ASSERT(AfxGetThread() == NULL);
 pThreadState->m_pCurrentWinThread = this;
 ASSERT(AfxGetThread() == this);
 m_hThread = ::GetCurrentThread();
 m_nThreadID = ::GetCurrentThreadId();

 // initialize CWinApp state
 ASSERT(afxCurrentWinApp == NULL); // only one CWinApp object please
 pModuleState->m_pCurrentWinApp = this;
 ASSERT(AfxGetApp() == this);

 // in non-running state until WinMain
 m_hInstance = NULL;
 m_pszHelpFilePath = NULL;
 m_pszProfileName = NULL;
 m_pszRegistryKey = NULL;
 m_pszExeName = NULL;
 m_pRecentFileList = NULL;
 m_pDocManager = NULL;
 m_atomApp = m_atomSystemTopic = NULL; //微軟懶鬼?或者他認為
 //這樣連等含義更明確?
 m_lpCmdLine = NULL;
 m_pCmdInfo = NULL;

 // initialize wait cursor state
 m_nWaitCursorCount = 0;
 m_hcurWaitCursorRestore = NULL;

 // initialize current printer state
 m_hDevMode = NULL;
 m_hDevNames = NULL;
 m_nNumPreviewPages = 0; // not specified (defaults to 1)

 // initialize DAO state
 m_lpfnDaoTerm = NULL; // will be set if AfxDaoInit called

 // other initialization
 m_bHelpMode = FALSE;
 m_nSafetyPoolSize = 512; // default size
}

  很顯然,theApp成員變量都被賦予OS啟動的這個當前線程相關的值,如代碼:

m_hThread = ::GetCurrentThread();//theApp的線程句柄等于當前線程句柄
m_nThreadID = ::GetCurrentThreadId();//theApp的線程ID等于當前線程ID

   所以CWinApp類幾乎只是為MFC程序的第一個線程量身定制的,它不需要也不能被AfxBeginThread或 theApp.CreateThread"再次"啟動。這就是CWinApp類和theApp全局變量的內涵!如果你要再增加一個UI線程,不要繼承類 CWinApp,而應繼承類CWinThread。而參考第1節,由于我們一般以主線程(在MFC程序里實際上就是OS啟動的第一個線程)處理所有窗口的 消息,所以我們幾乎沒有再啟動UI線程的需求!