win32多線程編程(ZT)
一.深入淺出Win32多線程程序設(shè)計之基本概念[轉(zhuǎn)]
引言
從單進程單線程到多進程多線程是操作系統(tǒng)發(fā)展的一種必然趨勢,當年的DOS系統(tǒng)屬于單任務(wù)操作系統(tǒng),最優(yōu)秀的程序員也只能通過駐留內(nèi)存的方式實現(xiàn)所謂的" 多任務(wù)",而如今的Win32操作系統(tǒng)卻可以一邊聽音樂,一邊編程,一邊打印文檔。
理解多線程及其同步、互斥等通信方式是理解現(xiàn)代操作系統(tǒng)的關(guān)鍵一環(huán),當我們精通了Win32多線程程序設(shè)計后,理解和學(xué)習(xí)其它操作系統(tǒng)的多任務(wù)控制也非
常容易。許多程序員從來沒有學(xué)習(xí)過嵌入式系統(tǒng)領(lǐng)域著名的操作系統(tǒng)VxWorks,但是立馬就能在上面做開發(fā),大概要歸功于平時在Win32多線程上下的功
夫。 因此,學(xué)習(xí)Win32多線程不僅對理解Win32本身有重要意義,而且對學(xué)習(xí)和領(lǐng)會其它操作系統(tǒng)也有觸類旁通的作用。 進程與線程 先闡述一下進程和線程的概念和區(qū)別,這是一個許多大學(xué)老師也講不清楚的問題。
進程(Process)是具有一定獨立功能的程序關(guān)于某個數(shù)據(jù)集合上的一次運行活動,是系統(tǒng)進行資源分配和調(diào)度的一個獨立單位。程序只是一組指令的有序
集合,它本身沒有任何運行的含義,只是一個靜態(tài)實體。而進程則不同,它是程序在某個數(shù)據(jù)集上的執(zhí)行,是一個動態(tài)實體。它因創(chuàng)建而產(chǎn)生,因調(diào)度而運行,因等
待資源或事件而被處于等待狀態(tài),因完成任務(wù)而被撤消,反映了一個程序在一定的數(shù)據(jù)集上運行的全部動態(tài)過程。 線程(Thread)是進程的一個實體,是CPU調(diào)度和分派的基本單位。線程不能夠獨立執(zhí)行,必須依存在應(yīng)用程序中,由應(yīng)用程序提供多個線程執(zhí)行控制。
線程和進程的關(guān)系是:線程是屬于進程的,線程運行在進程空間內(nèi),同一進程所產(chǎn)生的線程共享同一內(nèi)存空間,當進程退出時該進程所產(chǎn)生的線程都會被強制退出
并清除。線程可與屬于同一進程的其它線程共享進程所擁有的全部資源,但是其本身基本上不擁有系統(tǒng)資源,只擁有一點在運行中必不可少的信息(如程序計數(shù)器、
一組寄存器和棧)。 根據(jù)進程與線程的設(shè)置,操作系統(tǒng)大致分為如下類型: (1)單進程、單線程,MS-DOS大致是這種操作系統(tǒng); (2)多進程、單線程,多數(shù)UNIX(及類UNIX的LINUX)是這種操作系統(tǒng); (3)多進程、多線程,Win32(Windows NT/2000/XP等)、Solaris 2.x和OS/2都是這種操作系統(tǒng); (4)單進程、多線程,VxWorks是這種操作系統(tǒng)。 在操作系統(tǒng)中引入線程帶來的主要好處是: (1)在進程內(nèi)創(chuàng)建、終止線程比創(chuàng)建、終止進程要快; (2)同一進程內(nèi)的線程間切換比進程間的切換要快,尤其是用戶級線程間的切換。另外,線程的出現(xiàn)還因為以下幾個原因: (1)并發(fā)程序的并發(fā)執(zhí)行,在多處理環(huán)境下更為有效。一個并發(fā)程序可以建立一個進程,而這個并發(fā)程序中的若干并發(fā)程序段就可以分別建立若干線程,使這些線程在不同的處理機上執(zhí)行。 (2)每個進程具有獨立的地址空間,而該進程內(nèi)的所有線程共享該地址空間。這樣可以解決父子進程模型中,子進程必須復(fù)制父進程地址空間的問題。 (3)線程對解決客戶/服務(wù)器模型非常有效。 Win32進程 1、進程間通信( IPC) Win32進程間通信的方式主要有: (1)剪貼板(Clip Board); (2)動態(tài)數(shù)據(jù)交換(Dynamic Data Exchange); (3)部件對象模型(Component Object Model); (4)文件映射(File Mapping); (5)郵件槽(Mail Slots); (6)管道(Pipes); (7)Win32套接字( Socket); (8)遠程過程調(diào)用(Remote Procedure Call); (9)WM_COPYDATA消息(WM_COPYDATA Message)。 2、獲取進程信息 在WIN32中,可使用在PSAPI .DLL中提供的Process status Helper函數(shù)幫助我們獲取進程信息。 (1)EnumProcesses()函數(shù)可以獲取進程的ID,其原型為: | BOOL EnumProcesses(DWORD * lpidProcess, DWORD cb, DWORD*cbNeeded); |
參數(shù)lpidProcess:一個足夠大的DWORD類型的數(shù)組,用于存放進程的ID值; 參數(shù)cb:存放進程ID值的數(shù)組的最大長度,是一個DWORD類型的數(shù)據(jù); 參數(shù)cbNeeded:指向一個DWORD類型數(shù)據(jù)的指針,用于返回進程的數(shù)目; 函數(shù)返回值:如果調(diào)用成功,返回TRUE,同時將所有進程的ID值存放在lpidProcess參數(shù)所指向的數(shù)組中,進程個數(shù)存放在cbNeeded參數(shù)所指向的變量中;如果調(diào)用失敗,返回FALSE。 (2)GetModuleFileNameExA()函數(shù)可以實現(xiàn)通過進程句柄獲取進程文件名,其原型為: | DWORD GetModuleFileNameExA(HANDLE hProcess, HMODULE hModule,LPTSTR lpstrFileName, DWORD nsize); |
參數(shù)hProcess:接受進程句柄的參數(shù),是HANDLE類型的變量; 參數(shù)hModule:指針型參數(shù),在本文的程序中取值為NULL; 參數(shù)lpstrFileName:LPTSTR類型的指針,用于接受主調(diào)函數(shù)傳遞來的用于存放進程名的字符數(shù)組指針; 參數(shù)nsize:lpstrFileName所指數(shù)組的長度; 函數(shù)返回值:如果調(diào)用成功,返回一個大于0的DWORD類型的數(shù)據(jù),同時將hProcess所對應(yīng)的進程名存放在lpstrFileName參數(shù)所指向的數(shù)組中;加果調(diào)用失敗,則返回0。 通過下列代碼就可以遍歷系統(tǒng)中的進程,獲得進程列表: //獲取當前進程總數(shù) EnumProcesses(process_ids, sizeof(process_ids), &num_processes); //遍歷進程 for (int i = 0; i < num_processes; i++) { //根據(jù)進程ID獲取句柄 process[i] = OpenProcess(PROCESS_QUERY_INFORMATION | PROCESS_VM_READ, 0, process_ids[i]); //通過句柄獲取進程文件名 if (GetModuleFileNameExA(process[i], NULL, File_name, sizeof(fileName))) cout << fileName << endl; } | Win32線程
WIN32靠線程的優(yōu)先級(達到搶占式多任務(wù)的目的)及分配給線程的CPU時間來調(diào)度線程。WIN32本身的許多應(yīng)用程序也利用了多線程的特性,如任務(wù)管理器等。 本質(zhì)而言,一個處理器同一時刻只能執(zhí)行一個線程("微觀串行")。WIN32多任務(wù)機制使得CPU好像在同時處理多個任務(wù)一樣,實現(xiàn)了"宏觀并行"。其多線程調(diào)度的機制為: (1)運行一個線程,直到被中斷或線程必須等待到某個資源可用; (2)保存當前執(zhí)行線程的描述表(上下文); (3)裝入下一執(zhí)行線程的描述表(上下文); (4)若存在等待被執(zhí)行的線程,則重復(fù)上述過程。 WIN32下的線程可能具有不同的優(yōu)先級,優(yōu)先級的范圍為0~31,共32級,其中31表示最高優(yōu)先級,優(yōu)先級0為系統(tǒng)保留。它們可以分成兩類,即實時優(yōu)先級和可變優(yōu)先級: (1)實時優(yōu)先級從16到31,是實時程序所用的高優(yōu)先級線程,如許多監(jiān)控類應(yīng)用程序; (2)可變優(yōu)先級從1到15,絕大多數(shù)程序的優(yōu)先級都在這個范圍內(nèi)。。WIN32調(diào)度器為了優(yōu)化系統(tǒng)響應(yīng)時間,在它們執(zhí)行過程中可動態(tài)調(diào)整它們的優(yōu)先級。 多線程確實給應(yīng)用開發(fā)帶來了許多好處,但并非任何情況下都要使用多線程,一定要根據(jù)應(yīng)用程序的具體情況來綜合考慮。一般來說,在以下情況下可以考慮使用多線程: (1)應(yīng)用程序中的各任務(wù)相對獨立; (2)某些任務(wù)耗時較多; (3)各任務(wù)需要有不同的優(yōu)先級。 另外,對于一些實時系統(tǒng)應(yīng)用,應(yīng)考慮多線程。 Win32核心對象 WIN32核心對象包括進程、線程、文件、事件、信號量、互斥體和管道,核心對象可能有不只一個擁有者,甚至可以跨進程。有一組WIN32 API與核心對象息息相關(guān): (1)WaitForSingleObject,用于等待對象的"激活",其函數(shù)原型為: DWORD WaitForSingleObject( HANDLE hHandle, // 等待對象的句柄 DWORD dwMilliseconds // 等待毫秒數(shù),INFINITE表示無限等待 ); |
可以作為WaitForSingleObject第一個參數(shù)的對象包括:Change notification、Console
input、Event、Job、Memory resource
notification、Mutex、Process、Semaphore、Thread和Waitable timer。 如果等
待的對象不可用,那么線程就會掛起,直到對象可用線程才會被喚醒。對不同的對象,WaitForSingleObject表現(xiàn)為不同的含義。例如,使用
WaitForSingleObject(hThread,…)可以判斷一個線程是否結(jié)束;使用WaitForSingleObject
(hMutex,…)可以判斷是否能夠進入臨界區(qū);而WaitForSingleObject (hProcess,… )則表現(xiàn)為等待一個進程的結(jié)束。 與WaitForSingleObject對應(yīng)還有一個WaitForMultipleObjects函數(shù),可以用于等待多個對象,其原型為: | DWORD WaitForMultipleObjects(DWORD nCount,const HANDLE* pHandles,BOOL bWaitAll,DWORD dwMilliseconds); |
(2)CloseHandle,用于關(guān)閉對象,其函數(shù)原型為: | BOOL CloseHandle(HANDLE hObject); |
如果函數(shù)執(zhí)行成功,則返回TRUE;否則返回FALSE,我們可以通過GetLastError函數(shù)進一步可以獲得錯誤原因。 C運行時庫 在VC++6.0中,有兩種多線程編程方法:一是使用C運行時庫及WIN32 API函數(shù),另一種方法是使用MFC,MFC對多線程開發(fā)有強大的支持。 標準C運行時庫是1970年問世的,當時還沒有多線程的概念。因此,C運行時庫早期的設(shè)計者們不可能考慮到讓其支持多線程應(yīng)用程序。 Visual C++提供了兩種版本的C運行時庫,-個版本供單線程應(yīng)用程序調(diào)用,另一個版本供多線程應(yīng)用程序調(diào)用。多線程運行時庫與單線程運行時庫有兩個重大差別: (1)類似errno的全局變量,每個線程單獨設(shè)置一個; 這樣從每個線程中可以獲取正確的錯誤信息。 (2)多線程庫中的數(shù)據(jù)結(jié)構(gòu)以同步機制加以保護。 這樣可以避免訪問時候的沖突。 Visual C++提供的多線程運行時庫又分為靜態(tài)鏈接庫和動態(tài)鏈接庫兩類,而每一類運行時庫又可再分為debug版和release版,因此Visual C++共提供了6個運行時庫。如下表: | C運行時庫 | 庫文件 | | Single thread(static link) | libc.lib | | Debug single thread(static link) | Libcd.lib | | MultiThread(static link) | libcmt.lib | | Debug multiThread(static link) | libcmtd.lib | | MultiThread(dynamic link) | msvert.lib | | Debug multiThread(dynamic link) | msvertd.lib |
如果不使用VC多線程C運行時庫來生成多線程程序,必須執(zhí)行下列操作: (1)使用標準 C 庫(基于單線程)并且只允許可重入函數(shù)集進行庫調(diào)用; (2)使用 Win32 API 線程管理函數(shù),如 CreateThread; (3)通過使用 Win32 服務(wù)(如信號量和 EnterCriticalSection 及 LeaveCriticalSection 函數(shù)),為不可重入的函數(shù)提供自己的同步。 如果使用標準 C 庫而調(diào)用VC運行時庫函數(shù),則在程序的link階段會提示如下錯誤: error LNK2001: unresolved external symbol __endthreadex error LNK2001: unresolved external symbol __beginthreadex |
二.深入淺出Win32多線程程序設(shè)計之線程控制
WIN32線程控制主要實現(xiàn)線程的創(chuàng)建、終止、掛起和 恢復(fù)等操作,這些操作都依賴于WIN32提供的一組API和具體編譯器的C運行時 庫函數(shù)。 1.線程函數(shù) 在啟動一個線程之前,必須為線程編寫一個全局的線程函數(shù),這個線程函數(shù)接受一個32位的LPVOID作為參數(shù),返回一個UINT,線程函數(shù)的結(jié)構(gòu)為: UINT ThreadFunction(LPVOID pParam) { //線程處理代碼 return0; } |
在線程處理代碼部分通常包括一個死循環(huán),該循環(huán)中先等待某事情的發(fā)生,再處理相關(guān)的工作: while(1) { WaitForSingleObject(…,…);//或WaitForMultipleObjects(…) //Do something } |
一般來說,C++的類成員函數(shù)不能作為線程函數(shù)。這是因為在類中定義的成員函數(shù),編譯器會給其加上this指針。請看下列程序: #include "windows.h" #include <process.h> class ExampleTask { public: void taskmain(LPVOID param); void StartTask(); }; void ExampleTask::taskmain(LPVOID param) {}
void ExampleTask::StartTask() { _beginthread(taskmain,0,NULL); }
int main(int argc, char* argv[]) { ExampleTask realTimeTask; realTimeTask.StartTask(); return 0; } |
程序編譯時出現(xiàn)如下錯誤: error C2664: '_beginthread' : cannot convert parameter 1 from 'void (void *)' to 'void (__cdecl *)(void *)' None of the functions with this name in scope match the target type |
再看下列程序: #include "windows.h" #include <process.h> class ExampleTask { public: void taskmain(LPVOID param); };
void ExampleTask::taskmain(LPVOID param) {}
int main(int argc, char* argv[]) { ExampleTask realTimeTask; _beginthread(ExampleTask::taskmain,0,NULL); return 0; } |
程序編譯時會出錯: error C2664: '_beginthread' : cannot convert parameter 1 from 'void (void *)' to 'void (__cdecl *)(void *)' None of the functions with this name in scope match the target type |
如果一定要以類成員函數(shù)作為線程函數(shù),通常有如下解決方案: (1)將該成員函數(shù)聲明為static類型, 去掉this指針; 我們將上述二個程序改變?yōu)椋?br /> #include "windows.h" #include <process.h> class ExampleTask { public: void static taskmain(LPVOID param); void StartTask(); };
void ExampleTask::taskmain(LPVOID param) {}
void ExampleTask::StartTask() { _beginthread(taskmain,0,NULL); }
int main(int argc, char* argv[]) { ExampleTask realTimeTask; realTimeTask.StartTask(); return 0; } 和 #include "windows.h" #include <process.h> class ExampleTask { public: void static taskmain(LPVOID param); };
void ExampleTask::taskmain(LPVOID param) {}
int main(int argc, char* argv[]) { _beginthread(ExampleTask::taskmain,0,NULL); return 0; } |
均編譯通過。 將成員函數(shù)聲明為靜態(tài)雖然可以解決作為線程函數(shù)的問題,但是它帶來了新的問題,那就是static成員函數(shù)只能 訪問static成員。解決此問題的一種途徑是可以在調(diào)用類靜態(tài)成員函數(shù)(線程函數(shù))時將this指針作為參數(shù)傳入,并在改線程函數(shù)中用強制類型轉(zhuǎn)換將this轉(zhuǎn)換成指向該類的指針,通過該指針訪問非靜態(tài)成員。 (2)不定義類成員函數(shù)為線程函數(shù),而將線程 函數(shù)定義為類的友元函數(shù)。這樣,線程函數(shù)也可以有類成員函數(shù)同等的權(quán)限; 我們將程序修改為: #include "windows.h" #include <process.h> class ExampleTask { public: friend void taskmain(LPVOID param); void StartTask(); };
void taskmain(LPVOID param) { ExampleTask * pTaskMain = (ExampleTask *) param; //通過pTaskMain指針引用 }
void ExampleTask::StartTask() { _beginthread(taskmain,0,this); } int main(int argc, char* argv[]) { ExampleTask realTimeTask; realTimeTask.StartTask(); return 0; } |
(3)可以對非靜態(tài)成員函數(shù)實現(xiàn)回調(diào),并訪問非靜態(tài)成員,此法涉及到一些高級技巧,在此不再詳述。 2.創(chuàng)建線程 進程的主線程由操作系統(tǒng)自動生成,Win32提供了CreateThread API來完成用戶線程的創(chuàng)建,該API的原型為: HANDLE CreateThread( LPSECURITY_ATTRIBUTES lpThreadAttributes,//Pointer to a SECURITY_ATTRIBUTES structure SIZE_T dwStackSize, //Initial size of the stack, in bytes. LPTHREAD_START_ROUTINE lpStartAddress, LPVOID lpParameter, //Pointer to a variable to be passed to the thread DWORD dwCreationFlags, //Flags that control the creation of the thread LPDWORD lpThreadId //Pointer to a variable that receives the thread identifier ); |
如果使用C/C++語言編寫多線程應(yīng)用程序,一定不能使用操作系統(tǒng)提供的CreateThread API,而應(yīng)該使用C/C++運行時庫中的_beginthread(或_beginthreadex),其函數(shù)原型為: uintptr_t _beginthread( void( __cdecl *start_address )( void * ), //Start address of routine that begins execution of new thread unsigned stack_size, //Stack size for new thread or 0. void *arglist //Argument list to be passed to new thread or NULL ); uintptr_t _beginthreadex( void *security,//Pointer to a SECURITY_ATTRIBUTES structure unsigned stack_size, unsigned ( __stdcall *start_address )( void * ), void *arglist, unsigned initflag,//Initial state of new thread (0 for running or CREATE_SUSPENDED for suspended); unsigned *thrdaddr ); |
_beginthread函數(shù)與Win32 API 中的CreateThread函數(shù)類似,但有如下差異: (1)通過_beginthread函數(shù)我們可以利用其參數(shù)列表arglist將多個參數(shù)傳遞到線程; (2)_beginthread 函數(shù)初始化某些 C 運行時庫變量,在線程中若需要使用 C 運行時庫。 3.終止線程 線程的終止有如下四種方式: (1)線程函數(shù)返回; (2)線程自身調(diào)用ExitThread 函數(shù)即終止自己,其原型為: | VOID ExitThread(UINT fuExitCode ); |
它將參數(shù)fuExitCode設(shè)置為線程的退出碼。 注意:如果使用C/C++編寫代碼,我們應(yīng)該使用C/C++運行時庫函數(shù)_endthread (_endthreadex)終止線程,決不能使用ExitThread! _endthread 函數(shù)對于線程內(nèi)的條件終止很有用。例如,專門用于通信處理的線程若無法獲取對通信端口的控制,則會退出。 (3)同一進程或其他進程的線程調(diào)用TerminateThread函數(shù),其原型為: | BOOL TerminateThread(HANDLE hThread,DWORD dwExitCode); |
該函數(shù)用來結(jié)束由hThread參數(shù)指定的線程,并把dwExitCode設(shè)成該線程的退出碼。當某個線程不再響應(yīng)時,我們可以用其他線程調(diào)用該函數(shù)來終止這個不響應(yīng)的線程。 (4)包含線程的進程終止。 最好使用第1種方式終止線程,第2~4種方式都不宜采用。 4.掛起與恢復(fù)線程 當我們創(chuàng)建線程的時候,如果給其傳入CREATE_SUSPENDED標志,則該線程創(chuàng)建后被掛起,我們應(yīng)使用ResumeThread恢復(fù)它: | DWORD ResumeThread(HANDLE hThread); |
如果ResumeThread函數(shù)運行成功,它將返回線程的前一個暫停計數(shù),否則返回0x FFFFFFFF。 對于沒有被掛起的線程,程序員可以調(diào)用SuspendThread函數(shù)強行掛起之: | DWORD SuspendThread(HANDLE hThread); |
一個線程可以被掛起多次。線程可以自行暫停運行,但是不能自行恢復(fù)運行。如果一個線程被掛起n次,則該線程也必須被恢復(fù)n次才可能得以執(zhí)行。 5.設(shè)置線程優(yōu)先級 當一個線程被首次創(chuàng)建時,它的優(yōu)先級等同于它所屬進程的優(yōu)先級。在單個進程內(nèi)可以通過調(diào)用SetThreadPriority函數(shù)改變線程的相對優(yōu)先級。一個線程的優(yōu)先級是相對于其所屬進程的優(yōu)先級而言的。 | BOOL SetThreadPriority(HANDLE hThread, int nPriority); |
其中參數(shù)hThread是指向待修改優(yōu)先級線程的句柄,線程與包含它的進程的優(yōu)先級關(guān)系如下: 線程優(yōu)先級 = 進程類基本優(yōu)先級 + 線程相對優(yōu)先級 進程類的基本優(yōu)先級包括: (1)實時:REALTIME_PRIORITY_CLASS; (2)高:HIGH _PRIORITY_CLASS; (3)高于正常:ABOVE_NORMAL_PRIORITY_CLASS; (4)正常:NORMAL _PRIORITY_CLASS; (5)低于正常:BELOW_ NORMAL _PRIORITY_CLASS; (6)空閑:IDLE_PRIORITY_CLASS。 我們從Win32任務(wù)管理器中可以直觀的看到這六個進程類優(yōu)先級,如下圖: 線程的相對優(yōu)先級包括: (1)空閑:THREAD_PRIORITY_IDLE; (2)最低線程:THREAD_PRIORITY_LOWEST; (3)低于正常線程:THREAD_PRIORITY_BELOW_NORMAL; (4)正常線程:THREAD_PRIORITY_ NORMAL (缺省); (5)高于正常線程:THREAD_PRIORITY_ABOVE_NORMAL; (6)最高線程:THREAD_PRIORITY_HIGHEST; (7)關(guān)鍵時間:THREAD_PRIOTITY_CRITICAL。 下圖給出了進程優(yōu)先級和線程相對優(yōu)先級的映射關(guān)系: 例如: HANDLE hCurrentThread = GetCurrentThread(); //獲得該線程句柄 SetThreadPriority(hCurrentThread, THREAD_PRIORITY_LOWEST); |
6.睡眠 | VOID Sleep(DWORD dwMilliseconds); |
該函數(shù)可使線程暫停自己的運行,直到dwMilliseconds毫秒過去為止。它告訴系統(tǒng),自身不想在某個時間段內(nèi)被調(diào)度。 7.其它重要API 獲得線程優(yōu)先級 一個線程被創(chuàng)建時,就會有一個默認的優(yōu)先級,但是有時要動態(tài)地改變一個線程的優(yōu)先級,有時需獲得一個線程的優(yōu)先級。 | Int GetThreadPriority (HANDLE hThread); |
如果函數(shù)執(zhí)行發(fā)生錯誤,會返回THREAD_PRIORITY_ERROR_RETURN標志。如果函數(shù)成功地執(zhí)行,會返回優(yōu)先級標志。 獲得線程退出碼 BOOL WINAPI GetExitCodeThread( HANDLE hThread, LPDWORD lpExitCode ); |
如果執(zhí)行成功,GetExitCodeThread返回TRUE,退出碼被lpExitCode指向內(nèi)存記錄;否則返回FALSE,我們可通過GetLastError()獲知錯誤原因。如果線程尚未結(jié)束,lpExitCode帶回來的將是STILL_ALIVE。 獲得/設(shè)置線程上下文 BOOL WINAPI GetThreadContext( HANDLE hThread, LPCONTEXT lpContext ); BOOL WINAPI SetThreadContext( HANDLE hThread, CONST CONTEXT *lpContext ); |
由于GetThreadContext和SetThreadContext可以操作CPU內(nèi)部的寄存器,因此在一些高級技巧的編程中有一定應(yīng)用。譬如,
調(diào)試器可利用GetThreadContext掛起被調(diào)試線程獲取其上下文,并設(shè)置上下文中的標志寄存器中的陷阱標志位,最后通過
SetThreadContext使設(shè)置生效來進行單步調(diào)試。 8.實例 以下程序使用CreateThread創(chuàng)建兩個線程,在這兩個線程中Sleep一段時間,主線程通過GetExitCodeThread來判斷兩個線程是否結(jié)束運行: #define WIN32_LEAN_AND_MEAN #include <stdio.h> #include <stdlib.h> #include <windows.h> #include <conio.h>
DWORD WINAPI ThreadFunc(LPVOID);
int main() { HANDLE hThrd1; HANDLE hThrd2; DWORD exitCode1 = 0; DWORD exitCode2 = 0; DWORD threadId;
hThrd1 = CreateThread(NULL, 0, ThreadFunc, (LPVOID)1, 0, &threadId ); if (hThrd1) printf("Thread 1 launched\n");
hThrd2 = CreateThread(NULL, 0, ThreadFunc, (LPVOID)2, 0, &threadId ); if (hThrd2) printf("Thread 2 launched\n");
// Keep waiting until both calls to GetExitCodeThread succeed AND // neither of them returns STILL_ACTIVE. for (;;) { printf("Press any key to exit..\n"); getch();
GetExitCodeThread(hThrd1, &exitCode1); GetExitCodeThread(hThrd2, &exitCode2); if ( exitCode1 == STILL_ACTIVE ) puts("Thread 1 is still running!"); if ( exitCode2 == STILL_ACTIVE ) puts("Thread 2 is still running!"); if ( exitCode1 != STILL_ACTIVE && exitCode2 != STILL_ACTIVE ) break; }
CloseHandle(hThrd1); CloseHandle(hThrd2);
printf("Thread 1 returned %d\n", exitCode1); printf("Thread 2 returned %d\n", exitCode2);
return EXIT_SUCCESS; }
/* * Take the startup value, do some simple math on it, * and return the calculated value. */ DWORD WINAPI ThreadFunc(LPVOID n) { Sleep((DWORD)n*1000*2); return (DWORD)n * 10; } |
通過下面的程序我們可以看出多線程程序運行順序的難以預(yù)料以及WINAPI的CreateThread函數(shù)與C運行時庫的_beginthread的差別: #define WIN32_LEAN_AND_MEAN #include <stdio.h> #include <stdlib.h> #include <windows.h>
DWORD WINAPI ThreadFunc(LPVOID);
int main() { HANDLE hThrd; DWORD threadId; int i;
for (i = 0; i < 5; i++) { hThrd = CreateThread(NULL, 0, ThreadFunc, (LPVOID)i, 0, &threadId); if (hThrd) { printf("Thread launched %d\n", i); CloseHandle(hThrd); } } // Wait for the threads to complete. Sleep(2000);
return EXIT_SUCCESS; }
DWORD WINAPI ThreadFunc(LPVOID n) { int i; for (i = 0; i < 10; i++) printf("%d%d%d%d%d%d%d%d\n", n, n, n, n, n, n, n, n); return 0; } |
運行的輸出具有很大的隨機性,這里摘取了幾次結(jié)果的一部分(幾乎每一次都不同): 如果我們使用標準C庫函數(shù)而不是多線程版的運行時庫,則程序可能輸出"3333444444"這樣的結(jié)果,而使用多線程運行時庫后,則可避免這一問題。 下列程序在主線程中創(chuàng)建一個SecondThread,在SecondThread線程中通過自增對Counter計數(shù)到1000000,主線程一直等待其結(jié)束: #include <Win32.h> #include <stdio.h> #include <process.h>
unsigned Counter; unsigned __stdcall SecondThreadFunc(void *pArguments) { printf("In second thread...\n");
while (Counter < 1000000) Counter++;
_endthreadex(0); return 0; }
int main() { HANDLE hThread; unsigned threadID;
printf("Creating second thread...\n");
// Create the second thread. hThread = (HANDLE)_beginthreadex(NULL, 0, &SecondThreadFunc, NULL, 0, &threadID);
// Wait until second thread terminates WaitForSingleObject(hThread, INFINITE); printf("Counter should be 1000000; it is-> %d\n", Counter); // Destroy the thread object. CloseHandle(hThread); }
|
三.深入淺出Win32多線程程序設(shè)計之線程通信
簡介
線程之間通信的兩個基本問題是互斥和同步。 線程同步是指線程之間所具有的一種制約關(guān)系,一個線程的執(zhí)行依賴另一個線程的消息,當它沒有得到另一個線程的消息時應(yīng)等待,直到消息到達時才被喚醒。
線程互斥是指對于共享的操作系統(tǒng)資源(指的是廣義的"資源",而不是Windows的.res文件,譬如全局變量就是一種共享資源),在各線程訪問時的
排它性。當有若干個線程都要使用某一共享資源時,任何時刻最多只允許一個線程去使用,其它要使用該資源的線程必須等待,直到占用資源者釋放該資源。 線程互斥是一種特殊的線程同步。 實際上,互斥和同步對應(yīng)著線程間通信發(fā)生的兩種情況: (1)當有多個線程訪問共享資源而不使資源被破壞時; (2)當一個線程需要將某個任務(wù)已經(jīng)完成的情況 通知另外一個或多個線程時。 在 WIN32中,同步機制主要有以下幾種: (1)事件(Event); (2)信號量(semaphore); (3)互斥量(mutex); (4)臨界區(qū)( Critical section)。 全局變量 因為進程中的所有線程均可以訪問所有的全局變量,因而全局變量成為Win32多線程通信的最簡單方式。例如: int var; //全局變量 UINT ThreadFunction(LPVOIDpParam) { var = 0; while (var < MaxValue) { //線程處理 ::InterlockedIncrement(long*) &var); } return 0; } 請看下列程序: int globalFlag = false; DWORD WINAPI ThreadFunc(LPVOID n) { Sleep(2000); globalFlag = true;
return 0; }
int main() { HANDLE hThrd; DWORD threadId;
hThrd = CreateThread(NULL, 0, ThreadFunc, NULL, 0, &threadId); if (hThrd) { printf("Thread launched\n"); CloseHandle(hThrd); }
while (!globalFlag) ; printf("exit\n"); } |
上述程序中使用全局變量和while循環(huán)查詢進行線程間同步,實際上,這是一種應(yīng)該避免的方法,因為: (1)當主線程必須使自己與ThreadFunc函數(shù)的完成運行實現(xiàn)同步時,它并沒有使自己進入睡眠狀態(tài)。由于主線程沒有進入睡眠狀態(tài),因此操作系統(tǒng)繼續(xù)為它調(diào)度C P U時間,這就要占用其他線程的寶貴時間周期; (2)當主線程的優(yōu)先級高于執(zhí)行ThreadFunc函數(shù)的線程時,就會發(fā)生globalFlag永遠不能被賦值為true的情況。因為在這種情況下,系統(tǒng)決不會將任何時間片分配給ThreadFunc線程。 事件 事件(Event)是WIN32提供的最靈活的線程間同步方式,事件可以處于激發(fā)狀態(tài)(signaled or true)或未激發(fā)狀態(tài)(unsignal or false)。根據(jù)狀態(tài)變遷方式的不同,事件可分為兩類: (1)手動設(shè)置:這種對象只可能用程序手動設(shè)置,在需要該事件或者事件發(fā)生時,采用SetEvent及ResetEvent來進行設(shè)置。 (2)自動恢復(fù):一旦事件發(fā)生并被處理后,自動恢復(fù)到?jīng)]有事件狀態(tài),不需要再次設(shè)置。 創(chuàng)建事件的函數(shù)原型為: HANDLE CreateEvent( LPSECURITY_ATTRIBUTES lpEventAttributes, // SECURITY_ATTRIBUTES結(jié)構(gòu)指針,可為NULL BOOL bManualReset, // 手動/自動 // TRUE:在WaitForSingleObject后必須手動調(diào)用ResetEvent清除信號 // FALSE:在WaitForSingleObject后,系統(tǒng)自動清除事件信號 BOOL bInitialState, //初始狀態(tài) LPCTSTR lpName //事件的名稱 ); |
使用"事件"機制應(yīng)注意以下事項: (1)如果跨進程訪問事件,必須對事件命名,在對事件命名的時候,要注意不要與系統(tǒng)命名空間中的其它全局命名對象沖突; (2)事件是否要自動恢復(fù); (3)事件的初始狀態(tài)設(shè)置。
由于event對象屬于內(nèi)核對象,故進程B可以調(diào)用OpenEvent函數(shù)通過對象的名字獲得進程A中event對象的句柄,然后將這個句柄用于
ResetEvent、SetEvent和WaitForMultipleObjects等函數(shù)中。此法可以實現(xiàn)一個進程的線程控制另一進程中線程的運
行,例如: HANDLE hEvent=OpenEvent(EVENT_ALL_ACCESS,true,"MyEvent"); ResetEvent(hEvent); |
臨界區(qū)
定義臨界區(qū)變量 | CRITICAL_SECTION gCriticalSection; |
通常情況下,CRITICAL_SECTION結(jié)構(gòu)體應(yīng)該被定義為全局變量,以便于進程中的所有線程方便地按照變量名來引用該結(jié)構(gòu)體。 初始化臨界區(qū) VOID WINAPI InitializeCriticalSection( LPCRITICAL_SECTION lpCriticalSection //指向程序員定義的CRITICAL_SECTION變量 ); |
該函數(shù)用于對pcs所指的CRITICAL_SECTION結(jié)構(gòu)體進行初始化。該函數(shù)只是設(shè)置了一些成員變量,它的運行一般不會失敗,因此它采用了
VOID類型的返回值。該函數(shù)必須在任何線程調(diào)用EnterCriticalSection函數(shù)之前被調(diào)用,如果一個線程試圖進入一個未初始化的
CRTICAL_SECTION,那么結(jié)果將是很難預(yù)計的。 刪除臨界區(qū) VOID WINAPI DeleteCriticalSection( LPCRITICAL_SECTION lpCriticalSection //指向一個不再需要的CRITICAL_SECTION變量 ); |
進入臨界區(qū) VOID WINAPI EnterCriticalSection( LPCRITICAL_SECTION lpCriticalSection //指向一個你即將鎖定的CRITICAL_SECTION變量 ); |
離開臨界區(qū) VOID WINAPI LeaveCriticalSection( LPCRITICAL_SECTION lpCriticalSection //指向一個你即將離開的CRITICAL_SECTION變量 ); |
使用臨界區(qū)編程的一般方法是: void UpdateData() { EnterCriticalSection(&gCriticalSection); ...//do something LeaveCriticalSection(&gCriticalSection); } |
關(guān)于臨界區(qū)的使用,有下列注意點: (1)每個共享資源使用一個CRITICAL_SECTION變量; (2)不要長時間運行關(guān)鍵代碼段,當一個關(guān)鍵代碼段長時間運行時,其他線程就會進入等待狀態(tài),這會降低應(yīng)用程序的運行性能; (3)如果需要同時訪問多個資源,則可能連續(xù)調(diào)用EnterCriticalSection; (4)Critical Section不是OS核心對象,如果進入臨界區(qū)的線程"掛"了,將無法釋放臨界資源。這個缺點在Mutex中得到了彌補。 互斥 互斥量的作用是保證每次只能有一個線程獲得互斥量而得以繼續(xù)執(zhí)行,使用CreateMutex函數(shù)創(chuàng)建: HANDLE CreateMutex( LPSECURITY_ATTRIBUTES lpMutexAttributes, // 安全屬性結(jié)構(gòu)指針,可為NULL BOOL bInitialOwner, //是否占有該互斥量,TRUE:占有,F(xiàn)ALSE:不占有 LPCTSTR lpName //信號量的名稱 );
|
Mutex是核心對象,可以跨進程訪問,下面的代碼給出了從另一進程訪問命名Mutex的例子: HANDLE hMutex; hMutex = OpenMutex(MUTEX_ALL_ACCESS, FALSE, L"mutexName"); if (hMutex){ … } else{ … } |
相關(guān)API: BOOL WINAPI ReleaseMutex( HANDLE hMutex ); |
使用互斥編程的一般方法是: void UpdateResource() { WaitForSingleObject(hMutex,…); ...//do something ReleaseMutex(hMutex); } |
互斥(mutex)內(nèi)核對象能夠確保線程擁有對單個資源的互斥訪問權(quán)。互斥對象的行為特性與臨界區(qū)相同,但是互斥對象屬于內(nèi)核對象,而臨界區(qū)則屬于用戶方式對象,因此這導(dǎo)致mutex與Critical Section的如下不同: (1) 互斥對象的運行速度比關(guān)鍵代碼段要慢; (2) 不同進程中的多個線程能夠訪問單個互斥對象; (3) 線程在等待訪問資源時可以設(shè)定一個超時值。 下圖更詳細地列出了互斥與臨界區(qū)的不同:
信號量
信號量是維護0到指定最大值之間的同步對象。信號量狀態(tài)在其計數(shù)大于0時是有信號的,而其計數(shù)是0時是無信號的。信號量對象在控制上可以支持有限數(shù)量共享資源的訪問。 信號量的特點和用途可用下列幾句話定義: (1)如果當前資源的數(shù)量大于0,則信號量有效; (2)如果當前資源數(shù)量是0,則信號量無效; (3)系統(tǒng)決不允許當前資源的數(shù)量為負值; (4)當前資源數(shù)量決不能大于最大資源數(shù)量。 創(chuàng)建信號量 HANDLE CreateSemaphore ( PSECURITY_ATTRIBUTE psa, LONG lInitialCount, //開始時可供使用的資源數(shù) LONG lMaximumCount, //最大資源數(shù) PCTSTR pszName); |
釋放信號量 通過調(diào)用ReleaseSemaphore函數(shù),線程就能夠?qū)π艠说漠斍百Y源數(shù)量進行遞增,該函數(shù)原型為: BOOL WINAPI ReleaseSemaphore( HANDLE hSemaphore, LONG lReleaseCount, //信號量的當前資源數(shù)增加lReleaseCount LPLONG lpPreviousCount ); |
打開信號量 和其他核心對象一樣,信號量也可以通過名字跨進程訪問,打開信號量的API為: HANDLE OpenSemaphore ( DWORD fdwAccess, BOOL bInherithandle, PCTSTR pszName ); | 互鎖訪問 當必須以原子操作方式來修改單個值時,互鎖訪問函數(shù)是相當有用的。所謂原子訪問,是指線程在訪問資源時能夠確保所有其他線程都不在同一時間內(nèi)訪問相同的資源。 請看下列代碼: int globalVar = 0;
DWORD WINAPI ThreadFunc1(LPVOID n) { globalVar++; return 0; } DWORD WINAPI ThreadFunc2(LPVOID n) { globalVar++; return 0; } |
運行ThreadFunc1和ThreadFunc2線程,結(jié)果是不可預(yù)料的,因為globalVar++并不對應(yīng)著一條機器指令,我們看看globalVar++的反匯編代碼: 00401038 mov eax,[globalVar (0042d3f0)] 0040103D add eax,1 00401040 mov [globalVar (0042d3f0)],eax |
在"mov eax,[globalVar (0042d3f0)]" 指令與"add eax,1" 指令以及"add eax,1"
指令與"mov [globalVar
(0042d3f0)],eax"指令之間都可能發(fā)生線程切換,使得程序的執(zhí)行后globalVar的結(jié)果不能確定。我們可以使用
InterlockedExchangeAdd函數(shù)解決這個問題: int globalVar = 0;
DWORD WINAPI ThreadFunc1(LPVOID n) { InterlockedExchangeAdd(&globalVar,1); return 0; } DWORD WINAPI ThreadFunc2(LPVOID n) { InterlockedExchangeAdd(&globalVar,1); return 0; } |
InterlockedExchangeAdd保證對變量globalVar的訪問具有"原子性"。互鎖訪問的控制速度非常快,調(diào)用一個互鎖函數(shù)的CPU周期通常小于50,不需要進行用戶方式與內(nèi)核方式的切換(該切換通常需要運行1000個CPU周期)。 互鎖訪問函數(shù)的缺點在于其只能對單一變量進行原子訪問,如果要訪問的資源比較復(fù)雜,仍要使用臨界區(qū)或互斥。 可等待定時器 可等待定時器是在某個時間或按規(guī)定的間隔時間發(fā)出自己的信號通知的內(nèi)核對象。它們通常用來在某個時間執(zhí)行某個操作。 創(chuàng)建可等待定時器 HANDLE CreateWaitableTimer( PSECURITY_ATTRISUTES psa, BOOL fManualReset,//人工重置或自動重置定時器 PCTSTR pszName); |
設(shè)置可等待定時器 可等待定時器對象在非激活狀態(tài)下被創(chuàng)建,程序員應(yīng)調(diào)用 SetWaitableTimer函數(shù)來界定定時器在何時被激活: BOOL SetWaitableTimer( HANDLE hTimer, //要設(shè)置的定時器 const LARGE_INTEGER *pDueTime, //指明定時器第一次激活的時間 LONG lPeriod, //指明此后定時器應(yīng)該間隔多長時間激活一次 PTIMERAPCROUTINE pfnCompletionRoutine, PVOID PvArgToCompletionRoutine, BOOL fResume); |
取消可等待定時器 BOOl Cancel WaitableTimer( HANDLE hTimer //要取消的定時器 ); |
打開可等待定時器 作為一種內(nèi)核對象,WaitableTimer也可以被其他進程以名字打開: HANDLE OpenWaitableTimer ( DWORD fdwAccess, BOOL bInherithandle, PCTSTR pszName ); | 實例 下面給出的一個程序可能發(fā)生死鎖現(xiàn)象: #include <windows.h> #include <stdio.h> CRITICAL_SECTION cs1, cs2; long WINAPI ThreadFn(long); main() { long iThreadID; InitializeCriticalSection(&cs1); InitializeCriticalSection(&cs2); CloseHandle(CreateThread(NULL, 0, (LPTHREAD_START_ROUTINE)ThreadFn, NULL, 0,&iThreadID)); while (TRUE) { EnterCriticalSection(&cs1); printf("\n線程1占用臨界區(qū)1"); EnterCriticalSection(&cs2); printf("\n線程1占用臨界區(qū)2");
printf("\n線程1占用兩個臨界區(qū)");
LeaveCriticalSection(&cs2); LeaveCriticalSection(&cs1);
printf("\n線程1釋放兩個臨界區(qū)"); Sleep(20); }; return (0); }
long WINAPI ThreadFn(long lParam) { while (TRUE) { EnterCriticalSection(&cs2); printf("\n線程2占用臨界區(qū)2"); EnterCriticalSection(&cs1); printf("\n線程2占用臨界區(qū)1");
printf("\n線程2占用兩個臨界區(qū)");
LeaveCriticalSection(&cs1); LeaveCriticalSection(&cs2);
printf("\n線程2釋放兩個臨界區(qū)"); Sleep(20); }; } |
運行這個程序,在中途一旦發(fā)生這樣的輸出: 線程1占用臨界區(qū)1 線程2占用臨界區(qū)2 或 線程2占用臨界區(qū)2 線程1占用臨界區(qū)1 或 線程1占用臨界區(qū)2 線程2占用臨界區(qū)1 或 線程2占用臨界區(qū)1 線程1占用臨界區(qū)2 程序就"死"掉了,再也運行不下去。因為這樣的輸出,意味著兩個線程相互等待對方釋放臨界區(qū),也即出現(xiàn)了死鎖。 如果我們將線程2的控制函數(shù)改為: long WINAPI ThreadFn(long lParam) { while (TRUE) { EnterCriticalSection(&cs1); printf("\n線程2占用臨界區(qū)1"); EnterCriticalSection(&cs2); printf("\n線程2占用臨界區(qū)2");
printf("\n線程2占用兩個臨界區(qū)");
LeaveCriticalSection(&cs1); LeaveCriticalSection(&cs2);
printf("\n線程2釋放兩個臨界區(qū)"); Sleep(20); }; } |
再次運行程序,死鎖被消除,程序不再擋掉。這是因為我們改變了線程2中獲得臨界區(qū)1、2的順序,消除了線程1、2相互等待資源的可能性。 由此我們得出結(jié)論,在使用線程間的同步機制時,要特別留心死鎖的發(fā)生。 四.深入淺出Win32多線程程序設(shè)計之綜合實例
本章我們將以工業(yè)控制和嵌入式系統(tǒng)中運用極為廣泛的串口通信為例講述多線程的典型應(yīng)用。 而網(wǎng)絡(luò)通信也是多線程應(yīng)用最廣泛的領(lǐng)域之一,所以本章的最后一節(jié)也將對多線程網(wǎng)絡(luò)通信進行簡短的描述。 1.串口通信 在工業(yè)控制系統(tǒng)中,工控機(一般都基于PC Windows平臺)經(jīng)常需要與單片機通過串口進行通信。因此,操作和使用PC的串口成為大多數(shù)單片機、嵌入式系統(tǒng)領(lǐng)域工程師必須具備的能力。 串口的使用需要通過三個步驟來完成的: (1) 打開通信端口; (2) 初始化串口,設(shè)置波特率、數(shù)據(jù)位、停止位、奇偶校驗等參數(shù)。為了給讀者一個直觀的印象,下圖從Windows的"控制面板->系統(tǒng)->設(shè)備管理器->通信端口(COM1)"打開COM的設(shè)置窗口: 
(3) 讀寫串口。 在WIN32平臺下,對通信端口進行操作跟基本的文件操作一樣。 創(chuàng)建/打開COM資源 下列函數(shù)如果調(diào)用成功,則返回一個標識通信端口的句柄,否則返回-1: HADLE CreateFile(PCTSTR lpFileName, //通信端口名,如"COM1" WORD dwDesiredAccess, //對資源的訪問類型 WORD dwShareMode, //指定共享模式,COM不能共享,該參數(shù)為0 PSECURITY_ATTRIBUTES lpSecurityAttributes, //安全描述符指針,可為NULL WORD dwCreationDisposition, //創(chuàng)建方式 WORD dwFlagsAndAttributes, //文件屬性,可為NULL HANDLE hTemplateFile //模板文件句柄,置為NULL ); |
獲得/設(shè)置COM屬性 下列函數(shù)可以獲得COM口的設(shè)備控制塊,從而獲得相關(guān)參數(shù): BOOL WINAPI GetCommState( HANDLE hFile, //標識通信端口的句柄 LPDCB lpDCB //指向一個設(shè)備控制塊(DCB結(jié)構(gòu))的指針 ); |
如果要調(diào)整通信端口的參數(shù),則需要重新配置設(shè)備控制塊,再用WIN32 API SetCommState()函數(shù)進行設(shè)置: BOOL SetCommState( HANDLE hFile, //標識通信端口的句柄 LPDCB lpDCB //指向一個設(shè)備控制塊(DCB結(jié)構(gòu))的指針 ); |
DCB結(jié)構(gòu)包含了串口的各項參數(shù)設(shè)置,如下: typedef struct _DCB { // dcb DWORD DCBlength; // sizeof(DCB) DWORD BaudRate; // current baud rate DWORD fBinary: 1; // binary mode, no EOF check DWORD fParity: 1; // enable parity checking DWORD fOutxCtsFlow: 1; // CTS output flow control DWORD fOutxDsrFlow: 1; // DSR output flow control DWORD fDtrControl: 2; // DTR flow control type DWORD fDsrSensitivity: 1; // DSR sensitivity DWORD fTXContinueOnXoff: 1; // XOFF continues Tx DWORD fOutX: 1; // XON/XOFF out flow control DWORD fInX: 1; // XON/XOFF in flow control DWORD fErrorChar: 1; // enable error replacement DWORD fNull: 1; // enable null stripping DWORD fRtsControl: 2; // RTS flow control DWORD fAbortOnError: 1; // abort reads/writes on error DWORD fDummy2: 17; // reserved WORD wReserved; // not currently used WORD XonLim; // transmit XON threshold WORD XoffLim; // transmit XOFF threshold BYTE ByteSize; // number of bits/byte, 4-8 BYTE Parity; // 0-4=no,odd,even,mark,space BYTE StopBits; // 0,1,2 = 1, 1.5, 2 char XonChar; // Tx and Rx XON character char XoffChar; // Tx and Rx XOFF character char ErrorChar; // error replacement character char EofChar; // end of input character char EvtChar; // received event character WORD wReserved1; // reserved; do not use } DCB; |
讀寫串口 在讀寫串口之前,還要用PurgeComm()函數(shù)清空緩沖區(qū),并用SetCommMask ()函數(shù)設(shè)置事件掩模來監(jiān)視指定通信端口上的事件,其原型為: BOOL SetCommMask( HANDLE hFile, //標識通信端口的句柄 DWORD dwEvtMask //能夠使能的通信事件 ); |
串口上可能發(fā)生的事件如下表所示: | 值 | 事件描述 | | EV_BREAK | A break was detected on input. | | EV_CTS | The CTS (clear-to-send) signal changed state. | | EV_DSR | The DSR(data-set-ready) signal changed state. | | EV_ERR | A line-status error occurred. Line-status errors are CE_FRAME, CE_OVERRUN, and CE_RXPARITY. | | EV_RING | A ring indicator was detected. | | EV_RLSD | The RLSD (receive-line-signal-detect) signal changed state. | | EV_RXCHAR | A character was received and placed in the input buffer. | | EV_RXFLAG | The event character was received and placed in the input buffer.
The event character is specified in the device's DCB structure, which
is applied to a serial port by using the SetCommState function. | | EV_TXEMPTY | The last character in the output buffer was sent. |
在設(shè)置好事件掩模后,我們就可以利用WaitCommEvent()函數(shù)來等待串口上發(fā)生事件,其函數(shù)原型為: BOOL WaitCommEvent( HANDLE hFile, //標識通信端口的句柄 LPDWORD lpEvtMask, //指向存放事件標識變量的指針 LPOVERLAPPED lpOverlapped, // 指向overlapped結(jié)構(gòu) ); |
我們可以在發(fā)生事件后,根據(jù)相應(yīng)的事件類型,進行串口的讀寫操作: BOOL ReadFile(HANDLE hFile, //標識通信端口的句柄 LPVOID lpBuffer, //輸入數(shù)據(jù)Buffer指針 DWORD nNumberOfBytesToRead, // 需要讀取的字節(jié)數(shù) LPDWORD lpNumberOfBytesRead, //實際讀取的字節(jié)數(shù)指針 LPOVERLAPPED lpOverlapped //指向overlapped結(jié)構(gòu) ); BOOL WriteFile(HANDLE hFile, //標識通信端口的句柄 LPCVOID lpBuffer, //輸出數(shù)據(jù)Buffer指針 DWORD nNumberOfBytesToWrite, //需要寫的字節(jié)數(shù) LPDWORD lpNumberOfBytesWritten, //實際寫入的字節(jié)數(shù)指針 LPOVERLAPPED lpOverlapped //指向overlapped結(jié)構(gòu) ); | 2.工程實例
下面我們用第1節(jié)所述API實現(xiàn)一個多線程的串口通信程序。這個例子工程(工程名為MultiThreadCom)的界面很簡單,如下圖所示: 它是一個多線程的應(yīng)用程序,包括兩個工作者線程,分別處理串口1和串口2。為了簡化問題,我們讓連接兩個串口的電纜只包含RX、TX兩根連線(即不以硬件控制RS-232,串口上只會發(fā)生EV_TXEMPTY、EV_RXCHAR事件)。 在工程實例的BOOL CMultiThreadComApp::InitInstance()函數(shù)中,啟動并設(shè)置COM1和COM2,其源代碼為: BOOL CMultiThreadComApp::InitInstance() { AfxEnableControlContainer(); //打開并設(shè)置COM1 hComm1=CreateFile("COM1", GENERIC_READ|GENERIC_WRITE, 0, NULL ,OPEN_EXISTING, 0,NULL); if (hComm1==(HANDLE)-1) { AfxMessageBox("打開COM1失敗"); return false; } else { DCB wdcb; GetCommState (hComm1,&wdcb); wdcb.BaudRate=9600; SetCommState (hComm1,&wdcb); PurgeComm(hComm1,PURGE_TXCLEAR); } //打開并設(shè)置COM2 hComm2=CreateFile("COM2", GENERIC_READ|GENERIC_WRITE, 0, NULL ,OPEN_EXISTING, 0,NULL); if (hComm2==(HANDLE)-1) { AfxMessageBox("打開COM2失敗"); return false; } else { DCB wdcb; GetCommState (hComm2,&wdcb); wdcb.BaudRate=9600; SetCommState (hComm2,&wdcb); PurgeComm(hComm2,PURGE_TXCLEAR); }
CMultiThreadComDlg dlg; m_pMainWnd = &dlg; int nResponse = dlg.DoModal(); if (nResponse == IDOK) { // TODO: Place code here to handle when the dialog is // dismissed with OK } else if (nResponse == IDCANCEL) { // TODO: Place code here to handle when the dialog is // dismissed with Cancel } return FALSE; } |
此后我們在對話框CMultiThreadComDlg的初始化函數(shù)OnInitDialog中啟動兩個分別處理COM1和COM2的線程: BOOL CMultiThreadComDlg::OnInitDialog() { CDialog::OnInitDialog(); // Add "About..." menu item to system menu.
// IDM_ABOUTBOX must be in the system command range. ASSERT((IDM_ABOUTBOX & 0xFFF0) == IDM_ABOUTBOX); ASSERT(IDM_ABOUTBOX < 0xF000);
CMenu* pSysMenu = GetSystemMenu(FALSE); if (pSysMenu != NULL) { CString strAboutMenu; strAboutMenu.LoadString(IDS_ABOUTBOX); if (!strAboutMenu.IsEmpty()) { pSysMenu->AppendMenu(MF_SEPARATOR); pSysMenu->AppendMenu(MF_STRING, IDM_ABOUTBOX, strAboutMenu); } }
// Set the icon for this dialog. The framework does this automatically // when the application's main window is not a dialog SetIcon(m_hIcon, TRUE); // Set big icon SetIcon(m_hIcon, FALSE); // Set small icon
// TODO: Add extra initialization here //啟動串口1處理線程 DWORD nThreadId1; hCommThread1 = ::CreateThread((LPSECURITY_ATTRIBUTES)NULL, 0, (LPTHREAD_START_ROUTINE)Com1ThreadProcess, AfxGetMainWnd()->m_hWnd, 0, &nThreadId1); if (hCommThread1 == NULL) { AfxMessageBox("創(chuàng)建串口1處理線程失敗"); return false; } //啟動串口2處理線程 DWORD nThreadId2; hCommThread2 = ::CreateThread((LPSECURITY_ATTRIBUTES)NULL, 0, (LPTHREAD_START_ROUTINE)Com2ThreadProcess, AfxGetMainWnd()->m_hWnd, 0, &nThreadId2); if (hCommThread2 == NULL) { AfxMessageBox("創(chuàng)建串口2處理線程失敗"); return false; }
return TRUE; // return TRUE unless you set the focus to a control } |
兩個串口COM1和COM2對應(yīng)的線程處理函數(shù)等待串口上發(fā)生事件,并根據(jù)事件類型和自身緩沖區(qū)是否有數(shù)據(jù)要發(fā)送進行相應(yīng)的處理,其源代碼為: DWORD WINAPI Com1ThreadProcess(HWND hWnd//主窗口句柄) { DWORD wEven; char str[10]; //讀入數(shù)據(jù) SetCommMask(hComm1, EV_RXCHAR | EV_TXEMPTY); while (TRUE) { WaitCommEvent(hComm1, &wEven, NULL); if(wEven = 0) { CloseHandle(hCommThread1); hCommThread1 = NULL; ExitThread(0); } else { switch (wEven) { case EV_TXEMPTY: if (wTxPos < wTxLen) { //在串口1寫入數(shù)據(jù) DWORD wCount; //寫入的字節(jié)數(shù) WriteFile(hComm1, com1Data.TxBuf[wTxPos], 1, &wCount, NULL); com1Data.wTxPos++; } break; case EV_RXCHAR: if (com1Data.wRxPos < com1Data.wRxLen) { //讀取串口數(shù)據(jù), 處理收到的數(shù)據(jù) DWORD wCount; //讀取的字節(jié)數(shù) ReadFile(hComm1, com1Data.RxBuf[wRxPos], 1, &wCount, NULL); com1Data.wRxPos++; if(com1Data.wRxPos== com1Data.wRxLen); ::PostMessage(hWnd, COM_SENDCHAR, 0, 1); } break; } } } } return TRUE; }
DWORD WINAPI Com2ThreadProcess(HWND hWnd //主窗口句柄) { DWORD wEven; char str[10]; //讀入數(shù)據(jù) SetCommMask(hComm2, EV_RXCHAR | EV_TXEMPTY); while (TRUE) { WaitCommEvent(hComm2, &wEven, NULL); if (wEven = 0) { CloseHandle(hCommThread2); hCommThread2 = NULL; ExitThread(0); } else { switch (wEven) { case EV_TXEMPTY: if (wTxPos < wTxLen) { //在串口2寫入數(shù)據(jù) DWORD wCount; //寫入的字節(jié)數(shù) WriteFile(hComm2, com2Data.TxBuf[wTxPos], 1, &wCount, NULL); com2Data.wTxPos++; } break; case EV_RXCHAR: if (com2Data.wRxPos < com2Data.wRxLen) { //讀取串口數(shù)據(jù), 處理收到的數(shù)據(jù) DWORD wCount; //讀取的字節(jié)數(shù) ReadFile(hComm2, com2Data.RxBuf[wRxPos], 1, &wCount, NULL); com2Data.wRxPos++; if(com2Data.wRxPos== com2Data.wRxLen); ::PostMessage(hWnd, COM_SENDCHAR, 0, 1); } break; } } } return TRUE; } |
線程控制函數(shù)中所操作的com1Data和com2Data是與串口對應(yīng)的數(shù)據(jù)結(jié)構(gòu)struct tagSerialPort的實例,這個數(shù)據(jù)結(jié)構(gòu)是: typedef struct tagSerialPort { BYTE RxBuf[SPRX_BUFLEN];//接收Buffer WORD wRxPos; //當前接收字節(jié)位置 WORD wRxLen; //要接收的字節(jié)數(shù) BYTE TxBuf[SPTX_BUFLEN];//發(fā)送Buffer WORD wTxPos; //當前發(fā)送字節(jié)位置 WORD wTxLen; //要發(fā)送的字節(jié)數(shù) }SerialPort, * LPSerialPort; |
3.多線程串口類
使用多線程串口通信更方便的途徑是編寫一個多線程的串口類,例如Remon Spekreijse編寫了一個CSerialPort串口類。仔細分析這個類的源代碼,將十分有助于我們對先前所學(xué)多線程及同步知識的理解。 3.1類的定義 #ifndef __SERIALPORT_H__ #define __SERIALPORT_H__
#define WM_COMM_BREAK_DETECTED WM_USER+1 // A break was detected on input. #define WM_COMM_CTS_DETECTED WM_USER+2 // The CTS (clear-to-send) signal changed state. #define WM_COMM_DSR_DETECTED WM_USER+3 // The DSR (data-set-ready) signal changed state. #define
WM_COMM_ERR_DETECTED WM_USER+4 // A line-status error occurred.
Line-status errors are CE_FRAME, CE_OVERRUN, and CE_RXPARITY. #define WM_COMM_RING_DETECTED WM_USER+5 // A ring indicator was detected. #define WM_COMM_RLSD_DETECTED WM_USER+6 // The RLSD (receive-line-signal-detect) signal changed state. #define WM_COMM_RXCHAR WM_USER+7 // A character was received and placed in the input buffer. #define WM_COMM_RXFLAG_DETECTED WM_USER+8 // The event character was received and placed in the input buffer. #define WM_COMM_TXEMPTY_DETECTED WM_USER+9 // The last character in the output buffer was sent.
class CSerialPort { public: // contruction and destruction CSerialPort(); virtual ~CSerialPort();
// port initialisation
BOOL InitPort(CWnd* pPortOwner, UINT portnr = 1, UINT baud = 19200,
char parity = 'N', UINT databits = 8, UINT stopsbits = 1, DWORD
dwCommEvents = EV_RXCHAR | EV_CTS, UINT nBufferSize = 512);
// start/stop comm watching BOOL StartMonitoring(); BOOL RestartMonitoring(); BOOL StopMonitoring();
DWORD GetWriteBufferSize(); DWORD GetCommEvents(); DCB GetDCB();
void WriteToPort(char* string);
protected: // protected memberfunctions void ProcessErrorMessage(char* ErrorText); static UINT CommThread(LPVOID pParam); static void ReceiveChar(CSerialPort* port, COMSTAT comstat); static void WriteChar(CSerialPort* port);
// thread CWinThread* m_Thread;
// synchronisation objects CRITICAL_SECTION m_csCommunicationSync; BOOL m_bThreadAlive;
// handles HANDLE m_hShutdownEvent; HANDLE m_hComm; HANDLE m_hWriteEvent;
// Event array. // One element is used for each event. There are two event handles for each port. // A Write event and a receive character event which is located in the overlapped structure (m_ov.hEvent). // There is a general shutdown when the port is closed. HANDLE m_hEventArray[3];
// structures OVERLAPPED m_ov; COMMTIMEOUTS m_CommTimeouts; DCB m_dcb;
// owner window CWnd* m_pOwner;
// misc UINT m_nPortNr; char* m_szWriteBuffer; DWORD m_dwCommEvents; DWORD m_nWriteBufferSize; };
#endif __SERIALPORT_H__ |
3.2類的實現(xiàn) 3.2.1構(gòu)造函數(shù)與析構(gòu)函數(shù) 進行相關(guān)變量的賦初值及內(nèi)存恢復(fù): CSerialPort::CSerialPort() { m_hComm = NULL;
// initialize overlapped structure members to zero m_ov.Offset = 0; m_ov.OffsetHigh = 0;
// create events m_ov.hEvent = NULL; m_hWriteEvent = NULL; m_hShutdownEvent = NULL;
m_szWriteBuffer = NULL;
m_bThreadAlive = FALSE; }
// // Delete dynamic memory // CSerialPort::~CSerialPort() { do { SetEvent(m_hShutdownEvent); } while (m_bThreadAlive);
TRACE("Thread ended\n");
delete []m_szWriteBuffer; } |
3.2.2核心函數(shù):初始化串口 在初始化串口函數(shù)中,將打開串口,設(shè)置相關(guān)參數(shù),并創(chuàng)建串口相關(guān)的用戶控制事件,初始化臨界區(qū)(Critical Section),以成隊的EnterCriticalSection()、LeaveCriticalSection()函數(shù)進行資源的排它性訪問: BOOL CSerialPort::InitPort(CWnd *pPortOwner, // the owner (CWnd) of the port (receives message) UINT portnr, // portnumber (1..4) UINT baud, // baudrate char parity, // parity UINT databits, // databits UINT stopbits, // stopbits DWORD dwCommEvents, // EV_RXCHAR, EV_CTS etc UINT writebuffersize) // size to the writebuffer { assert(portnr > 0 && portnr < 5); assert(pPortOwner != NULL);
// if the thread is alive: Kill if (m_bThreadAlive) { do { SetEvent(m_hShutdownEvent); } while (m_bThreadAlive); TRACE("Thread ended\n"); }
// create events if (m_ov.hEvent != NULL) ResetEvent(m_ov.hEvent); m_ov.hEvent = CreateEvent(NULL, TRUE, FALSE, NULL);
if (m_hWriteEvent != NULL) ResetEvent(m_hWriteEvent); m_hWriteEvent = CreateEvent(NULL, TRUE, FALSE, NULL);
if (m_hShutdownEvent != NULL) ResetEvent(m_hShutdownEvent); m_hShutdownEvent = CreateEvent(NULL, TRUE, FALSE, NULL);
// initialize the event objects m_hEventArray[0] = m_hShutdownEvent; // highest priority m_hEventArray[1] = m_ov.hEvent; m_hEventArray[2] = m_hWriteEvent;
// initialize critical section InitializeCriticalSection(&m_csCommunicationSync);
// set buffersize for writing and save the owner m_pOwner = pPortOwner;
if (m_szWriteBuffer != NULL) delete []m_szWriteBuffer; m_szWriteBuffer = new char[writebuffersize];
m_nPortNr = portnr;
m_nWriteBufferSize = writebuffersize; m_dwCommEvents = dwCommEvents;
BOOL bResult = FALSE; char *szPort = new char[50]; char *szBaud = new char[50];
// now it critical! EnterCriticalSection(&m_csCommunicationSync);
// if the port is already opened: close it if (m_hComm != NULL) { CloseHandle(m_hComm); m_hComm = NULL; }
// prepare port strings sprintf(szPort, "COM%d", portnr); sprintf(szBaud, "baud=%d parity=%c data=%d stop=%d", baud, parity, databits,stopbits);
// get a handle to the port m_hComm = CreateFile(szPort, // communication port string (COMX) GENERIC_READ | GENERIC_WRITE, // read/write types 0, // comm devices must be opened with exclusive access NULL, // no security attributes OPEN_EXISTING, // comm devices must use OPEN_EXISTING FILE_FLAG_OVERLAPPED, // Async I/O 0); // template must be 0 for comm devices
if (m_hComm == INVALID_HANDLE_VALUE) { // port not found delete []szPort; delete []szBaud; return FALSE; }
// set the timeout values m_CommTimeouts.ReadIntervalTimeout = 1000; m_CommTimeouts.ReadTotalTimeoutMultiplier = 1000; m_CommTimeouts.ReadTotalTimeoutConstant = 1000; m_CommTimeouts.WriteTotalTimeoutMultiplier = 1000; m_CommTimeouts.WriteTotalTimeoutConstant = 1000;
// configure if (SetCommTimeouts(m_hComm, &m_CommTimeouts)) { if (SetCommMask(m_hComm, dwCommEvents)) { if (GetCommState(m_hComm, &m_dcb)) { m_dcb.fRtsControl = RTS_CONTROL_ENABLE; // set RTS bit high! if (BuildCommDCB(szBaud, &m_dcb)) { if (SetCommState(m_hComm, &m_dcb)) ; // normal operation... continue else ProcessErrorMessage("SetCommState()"); } else ProcessErrorMessage("BuildCommDCB()"); } else ProcessErrorMessage("GetCommState()"); } else ProcessErrorMessage("SetCommMask()"); } else ProcessErrorMessage("SetCommTimeouts()");
delete []szPort; delete []szBaud;
// flush the port PurgeComm(m_hComm, PURGE_RXCLEAR | PURGE_TXCLEAR | PURGE_RXABORT | PURGE_TXABORT);
// release critical section LeaveCriticalSection(&m_csCommunicationSync);
TRACE("Initialisation for communicationport %d completed.\nUse Startmonitor to communicate.\n", portnr);
return TRUE; } |
3.3.3核心函數(shù):串口線程控制函數(shù) 串口線程處理函數(shù)是整個類中最核心的部分,它主要完成兩類工作: (1)利用WaitCommEvent函數(shù)對串口上發(fā)生的事件進行獲取并根據(jù)事件的不同類型進行相應(yīng)的處理; (2)利用WaitForMultipleObjects函數(shù)對串口相關(guān)的用戶控制事件進行等待并做相應(yīng)處理。 UINT CSerialPort::CommThread(LPVOID pParam) { // Cast the void pointer passed to the thread back to // a pointer of CSerialPort class CSerialPort *port = (CSerialPort*)pParam;
// Set the status variable in the dialog class to // TRUE to indicate the thread is running. port->m_bThreadAlive = TRUE;
// Misc. variables DWORD BytesTransfered = 0; DWORD Event = 0; DWORD CommEvent = 0; DWORD dwError = 0; COMSTAT comstat; BOOL bResult = TRUE;
// Clear comm buffers at startup if (port->m_hComm) // check if the port is opened PurgeComm(port->m_hComm, PURGE_RXCLEAR | PURGE_TXCLEAR | PURGE_RXABORT | PURGE_TXABORT);
// begin forever loop. This loop will run as long as the thread is alive. for (;;) { // Make a call to WaitCommEvent(). This call will return immediatly // because our port was created as an async port (FILE_FLAG_OVERLAPPED // and an m_OverlappedStructerlapped structure specified). This call will cause the // m_OverlappedStructerlapped element m_OverlappedStruct.hEvent, which is part of the m_hEventArray to // be placed in a non-signeled state if there are no bytes available to be read, // or to a signeled state if there are bytes available. If this event handle // is set to the non-signeled state, it will be set to signeled when a // character arrives at the port.
// we do this for each port!
bResult = WaitCommEvent(port->m_hComm, &Event, &port->m_ov);
if (!bResult) { // If WaitCommEvent() returns FALSE, process the last error to determin // the reason.. switch (dwError = GetLastError()) { case ERROR_IO_PENDING: { // This is a normal return value if there are no bytes // to read at the port. // Do nothing and continue break; } case 87: { // Under Windows NT, this value is returned for some reason. // I have not investigated why, but it is also a valid reply // Also do nothing and continue. break; } default: { // All other error codes indicate a serious error has // occured. Process this error. port->ProcessErrorMessage("WaitCommEvent()"); break; } } } else { // If WaitCommEvent() returns TRUE, check to be sure there are // actually bytes in the buffer to read. // // If you are reading more than one byte at a time from the buffer // (which this program does not do) you will have the situation occur // where the first byte to arrive will cause the WaitForMultipleObjects() // function to stop waiting. The WaitForMultipleObjects() function // resets the event handle in m_OverlappedStruct.hEvent to the non-signelead state // as it returns. // // If in the time between the reset of this event and the call to // ReadFile() more bytes arrive, the m_OverlappedStruct.hEvent handle will be set again // to the signeled state. When the call to ReadFile() occurs, it will // read all of the bytes from the buffer, and the program will // loop back around to WaitCommEvent(). // // At this point you will be in the situation where m_OverlappedStruct.hEvent is set, // but there are no bytes available to read. If you proceed and call // ReadFile(), it will return immediatly due to the async port setup, but // GetOverlappedResults() will not return until the next character arrives. // // It is not desirable for the GetOverlappedResults() function to be in // this state. The thread shutdown event (event 0) and the WriteFile() // event (Event2) will not work if the thread is blocked by GetOverlappedResults(). // // The solution to this is to check the buffer with a call to ClearCommError(). // This call will reset the event handle, and if there are no bytes to read // we can loop back through WaitCommEvent() again, then proceed. // If there are really bytes to read, do nothing and proceed.
bResult = ClearCommError(port->m_hComm, &dwError, &comstat);
if (comstat.cbInQue == 0) continue; } // end if bResult
// Main wait function. This function will normally block the thread // until one of nine events occur that require action. Event = WaitForMultipleObjects(3, port->m_hEventArray, FALSE, INFINITE);
switch (Event) { case 0: { // Shutdown event. This is event zero so it will be // the higest priority and be serviced first.
port->m_bThreadAlive = FALSE;
// Kill this thread. break is not needed, but makes me feel better. AfxEndThread(100); break; } case 1: // read event { GetCommMask(port->m_hComm, &CommEvent); if (CommEvent &EV_CTS) ::SendMessage(port->m_pOwner->m_hWnd, WM_COMM_CTS_DETECTED, (WPARAM)0, (LPARAM)port->m_nPortNr); if (CommEvent &EV_RXFLAG) ::SendMessage(port->m_pOwner->m_hWnd, WM_COMM_RXFLAG_DETECTED,(WPARAM)0, (LPARAM)port->m_nPortNr); if (CommEvent &EV_BREAK) ::SendMessage(port->m_pOwner->m_hWnd, WM_COMM_BREAK_DETECTED,(WPARAM)0, (LPARAM)port->m_nPortNr); if (CommEvent &EV_ERR) ::SendMessage(port->m_pOwner->m_hWnd, WM_COMM_ERR_DETECTED, (WPARAM)0, (LPARAM)port->m_nPortNr); if (CommEvent &EV_RING) ::SendMessage(port->m_pOwner->m_hWnd, WM_COMM_RING_DETECTED,(WPARAM)0, (LPARAM)port->m_nPortNr); if (CommEvent &EV_RXCHAR) // Receive character event from port. ReceiveChar(port, comstat); break; } case 2: // write event { // Write character event from port WriteChar(port); break; } } // end switch } // close forever loop return 0; } |
下列三個函數(shù)用于對串口線程進行啟動、掛起和恢復(fù): // // start comm watching // BOOL CSerialPort::StartMonitoring() { if (!(m_Thread = AfxBeginThread(CommThread, this))) return FALSE; TRACE("Thread started\n"); return TRUE; }
// // Restart the comm thread // BOOL CSerialPort::RestartMonitoring() { TRACE("Thread resumed\n"); m_Thread->ResumeThread(); return TRUE; }
// // Suspend the comm thread // BOOL CSerialPort::StopMonitoring() { TRACE("Thread suspended\n"); m_Thread->SuspendThread(); return TRUE; } |
3.3.4讀寫串口 下面一組函數(shù)是用戶對串口進行讀寫操作的接口: // // Write a character. // void CSerialPort::WriteChar(CSerialPort *port) { BOOL bWrite = TRUE; BOOL bResult = TRUE;
DWORD BytesSent = 0;
ResetEvent(port->m_hWriteEvent);
// Gain ownership of the critical section EnterCriticalSection(&port->m_csCommunicationSync);
if (bWrite) { // Initailize variables port->m_ov.Offset = 0; port->m_ov.OffsetHigh = 0;
// Clear buffer PurgeComm(port->m_hComm, PURGE_RXCLEAR | PURGE_TXCLEAR | PURGE_RXABORT | PURGE_TXABORT);
bResult = WriteFile(port->m_hComm, // Handle to COMM Port port->m_szWriteBuffer, // Pointer to message buffer in calling finction strlen((char*)port->m_szWriteBuffer), // Length of message to send &BytesSent, // Where to store the number of bytes sent &port->m_ov); // Overlapped structure
// deal with any error codes if (!bResult) { DWORD dwError = GetLastError(); switch (dwError) { case ERROR_IO_PENDING: { // continue to GetOverlappedResults() BytesSent = 0; bWrite = FALSE; break; } default: { // all other error codes port->ProcessErrorMessage("WriteFile()"); } } } else { LeaveCriticalSection(&port->m_csCommunicationSync); } } // end if(bWrite)
if (!bWrite) { bWrite = TRUE;
bResult = GetOverlappedResult(port->m_hComm, // Handle to COMM port &port->m_ov, // Overlapped structure &BytesSent, // Stores number of bytes sent TRUE); // Wait flag
LeaveCriticalSection(&port->m_csCommunicationSync);
// deal with the error code if (!bResult) { port->ProcessErrorMessage("GetOverlappedResults() in WriteFile()"); } } // end if (!bWrite)
// Verify that the data size send equals what we tried to send if (BytesSent != strlen((char*)port->m_szWriteBuffer)) { TRACE("WARNING: WriteFile() error.. Bytes Sent: %d; Message Length: %d\n", BytesSent, strlen((char*)port->m_szWriteBuffer)); } }
// // Character received. Inform the owner // void CSerialPort::ReceiveChar(CSerialPort *port, COMSTAT comstat) { BOOL bRead = TRUE; BOOL bResult = TRUE; DWORD dwError = 0; DWORD BytesRead = 0; unsigned char RXBuff;
for (;;) { // Gain ownership of the comm port critical section. // This process guarantees no other part of this program // is using the port object.
EnterCriticalSection(&port->m_csCommunicationSync);
// ClearCommError() will update the COMSTAT structure and // clear any other errors.
bResult = ClearCommError(port->m_hComm, &dwError, &comstat);
LeaveCriticalSection(&port->m_csCommunicationSync);
// start forever loop. I use this type of loop because I // do not know at runtime how many loops this will have to // run. My solution is to start a forever loop and to // break out of it when I have processed all of the // data available. Be careful with this approach and // be sure your loop will exit. // My reasons for this are not as clear in this sample // as it is in my production code, but I have found this // solutiion to be the most efficient way to do this.
if (comstat.cbInQue == 0) { // break out when all bytes have been read break; }
EnterCriticalSection(&port->m_csCommunicationSync);
if (bRead) { bResult = ReadFile(port->m_hComm, // Handle to COMM port &RXBuff, // RX Buffer Pointer 1, // Read one byte &BytesRead, // Stores number of bytes read &port->m_ov); // pointer to the m_ov structure // deal with the error code if (!bResult) { switch (dwError = GetLastError()) { case ERROR_IO_PENDING: { // asynchronous i/o is still in progress // Proceed on to GetOverlappedResults(); bRead = FALSE; break; } default: { // Another error has occured. Process this error. port->ProcessErrorMessage("ReadFile()"); break; } } } else { // ReadFile() returned complete. It is not necessary to call GetOverlappedResults() bRead = TRUE; } } // close if (bRead)
if (!bRead) { bRead = TRUE; bResult = GetOverlappedResult(port->m_hComm, // Handle to COMM port &port->m_ov, // Overlapped structure &BytesRead, // Stores number of bytes read TRUE); // Wait flag
// deal with the error code if (!bResult) { port->ProcessErrorMessage("GetOverlappedResults() in ReadFile()"); } } // close if (!bRead)
LeaveCriticalSection(&port->m_csCommunicationSync);
// notify parent that a byte was received ::SendMessage((port->m_pOwner)->m_hWnd, WM_COMM_RXCHAR, (WPARAM)RXBuff,(LPARAM)port->m_nPortNr); } // end forever loop
}
// // Write a string to the port // void CSerialPort::WriteToPort(char *string) { assert(m_hComm != 0);
memset(m_szWriteBuffer, 0, sizeof(m_szWriteBuffer)); strcpy(m_szWriteBuffer, string);
// set event for write SetEvent(m_hWriteEvent); }
// // Return the output buffer size // DWORD CSerialPort::GetWriteBufferSize() { return m_nWriteBufferSize; } |
3.3.5控制接口 應(yīng)用程序員使用下列一組public函數(shù)可以獲取串口的DCB及串口上發(fā)生的事件: // // Return the device control block // DCB CSerialPort::GetDCB() { return m_dcb; }
// // Return the communication event masks // DWORD CSerialPort::GetCommEvents() { return m_dwCommEvents; } |
3.3.6錯誤處理 // // If there is a error, give the right message // void CSerialPort::ProcessErrorMessage(char *ErrorText) { char *Temp = new char[200];
LPVOID lpMsgBuf;
FormatMessage(FORMAT_MESSAGE_ALLOCATE_BUFFER | FORMAT_MESSAGE_FROM_SYSTEM, NULL, GetLastError(), MAKELANGID(LANG_NEUTRAL, SUBLANG_DEFAULT), // Default language (LPTSTR) &lpMsgBuf, 0, NULL);
sprintf(Temp, "WARNING: %s Failed with the following error: \n%s\nPort: %d\n", (char*) ErrorText, lpMsgBuf, m_nPortNr); MessageBox(NULL, Temp, "Application Error", MB_ICONSTOP);
LocalFree(lpMsgBuf); delete []Temp; } |
仔細分析Remon
Spekreijse的CSerialPort類對我們理解多線程及其同步機制是大有益處的,從http:
//codeguru.earthweb.com/network/serialport.shtml我們可以獲取CSerialPort類的介紹與工程
實例。另外,電子工業(yè)出版社《Visual C++/Turbo
C串口通信編程實踐》一書的作者龔建偉也編寫了一個使用CSerialPort類的例子,可以從http:
//www.gjwtech.com/scomm/sc2serialportclass.htm獲得詳情。 4.多線程網(wǎng)絡(luò)通信 在網(wǎng)絡(luò)通信中使用多線程主要有兩種途徑,即主監(jiān)控線程和線程池。 4.1主監(jiān)控線程 這種方式指的是程序中使用一個主線程監(jiān)控某特定端口,一旦在這個端口上發(fā)生連接請求,則主監(jiān)控線程動態(tài)使用CreateThread派生出新的子線程處理該請求。主線程在派生子線程后不再對子線程加以控制和調(diào)度,而由子線程獨自和客戶方發(fā)生連接并處理異常。 使用這種方法的優(yōu)點是: (1)可以較快地實現(xiàn)原型設(shè)計,尤其在用戶數(shù)目較少、連接保持時間較長時有表現(xiàn)較好; (2)主線程不與子線程發(fā)生通信,在一定程度上減少了系統(tǒng)資源的消耗。 其缺點是: (1)生成和終止子線程的開銷比較大; (2)對遠端用戶的控制較弱。 這種多線程方式總的特點是"動態(tài)生成,靜態(tài)調(diào)度"。 4.2線程池 這種方式指的是主線程在初始化時靜態(tài)地生成一定數(shù)量的懸掛子線程,放置于線程池中。隨后,主線程將對這些懸掛子線程進行動態(tài)調(diào)度。一旦客戶發(fā)出連接請求,主線程將從線程池中查找一個懸掛的子線程: (1)如果找到,主線程將該連接分配給這個被發(fā)現(xiàn)的子線程。子線程從主線程處接管該連接,并與用戶通信。當連接結(jié)束時,該子線程將自動懸掛,并進人線程池等待再次被調(diào)度; (2)如果當前已沒有可用的子線程,主線程將通告發(fā)起連接的客戶。 使用這種方法進行設(shè)計的優(yōu)點是: (1)主線程可以更好地對派生的子線程進行控制和調(diào)度; (2)對遠程用戶的監(jiān)控和管理能力較強。 雖然主線程對子線程的調(diào)度要消耗一定的資源,但是與主監(jiān)控線程方式中派生和終止線程所要耗費的資源相比,要少很多。因此,使用該種方法設(shè)計和實現(xiàn)的系統(tǒng)在客戶端連接和終止變更頻繁時有上佳表現(xiàn)。 這種多線程方式總的特點是"靜態(tài)生成,動態(tài)調(diào)度"。
|
|
|
| | 日 | 一 | 二 | 三 | 四 | 五 | 六 |
|---|
| 26 | 27 | 28 | 29 | 30 | 31 | 1 | | 2 | 3 | 4 | 5 | 6 | 7 | 8 | | 9 | 10 | 11 | 12 | 13 | 14 | 15 | | 16 | 17 | 18 | 19 | 20 | 21 | 22 | | 23 | 24 | 25 | 26 | 27 | 28 | 29 | | 30 | 1 | 2 | 3 | 4 | 5 | 6 |
|
常用鏈接
留言簿(7)
隨筆檔案
文章分類
文章檔案
相冊
收藏夾
c++
搜索
最新評論

閱讀排行榜
評論排行榜
|
|