類型定義
在多叉樹中,兄弟遍歷迭代器有只讀、讀寫、只讀反轉、讀寫反轉4種,在mtree容器中的定義如下:
1
typedef sibling_iterator_impl<false,false> sibling_iterator;
2
typedef sibling_iterator_impl<false,true> reverse_sibling_iterator;
3
typedef sibling_iterator_impl<true,false> const_sibling_iterator;
4
typedef sibling_iterator_impl<true,true> const_reverse_sibling_iterator;
接口定義 多叉樹的兄弟遍歷是指訪問給定結點的所有兄弟(包括它自己),下面代碼是兄弟遍歷迭代器的聲明:
1
template<bool is_const,bool is_reverse>
2
class sibling_iterator_impl : public iterator_base_impl<is_const>
3
{
4
friend class mtree<T,false>;
5
typedef iterator_base_impl<is_const> base_type;
6
typedef typename base_type::node_pointer_type node_pointer_type;
7
typedef typename base_type::tree_pointer_type tree_pointer_type;
8
using base_type::tree_;
9
using base_type::off_;
10
using base_type::root_;
11
public:
12
sibling_iterator_impl();
13
sibling_iterator_impl(const base_type& iter);
14
sibling_iterator_impl& operator++();
15
sibling_iterator_impl& operator--();
16
sibling_iterator_impl operator++(int);
17
sibling_iterator_impl operator--(int);
18
sibling_iterator_impl operator + (size_t off);
19
sibling_iterator_impl& operator += (size_t off);
20
sibling_iterator_impl operator - (size_t off);
21
sibling_iterator_impl& operator -= (size_t off);
22
sibling_iterator_impl begin() const;
23
sibling_iterator_impl end() const;
24
protected:
25
void first(no_reverse_tag);
26
void first(reverse_tag);
27
void last(no_reverse_tag);
28
void last(reverse_tag);
29
void increment(no_reverse_tag);
30
void increment(reverse_tag);
31
void decrement(no_reverse_tag);
32
void decrement(reverse_tag);
33
private:
34
void forward_first();
35
void forward_last();
36
void forward_next();
37
void forward_prev();
38
};
接口實現 下面重點講述兄弟遍歷中4種定位方法的具體實現,隨后列出其它所有方法的實現代碼。 (1)forward_first:求正向第一個兄弟,就是其父結點的第一個孩子,代碼如下:
1
template<typename T>
2
template<bool is_const,bool is_reverse>
3
inline void mtree<T,false>::sibling_iterator_impl<is_const,is_reverse>::forward_first()
4
{
5
node_pointer_type p_node = &(*tree_)[root_];
6
off_ = root_ + p_node->first_child_;
7
} (2)forward_last:求正向最后一個兄弟,就是其父結點的最后一個孩子,代碼如下:
1
template<typename T>
2
template<bool is_const,bool is_reverse>
3
inline void mtree<T,false>::sibling_iterator_impl<is_const,is_reverse>::forward_last()
4
{
5
node_pointer_type p_node = &(*tree_)[root_];
6
off_ = root_ + p_node->last_child_;
7
} (3)forward_next:求正向下一個兄弟,如果當前結點存在右兄弟,那么就是它的右兄弟,否則返回end,代碼如下:
1
template<typename T>
2
template<bool is_const,bool is_reverse>
3
inline void mtree<T,false>::sibling_iterator_impl<is_const,is_reverse>::forward_next()
4
{
5
node_pointer_type p_node = &(*tree_)[off_];
6
p_node->next_sibling_ ? off_ += p_node->next_sibling_ : off_ = tree_->size();
7
} (4)forward_prev:求正向前一個結點,如果當前結點存在左兄弟,那么就是它的左兄弟,否則返回end,代碼如下:
1
template<typename T>
2
template<bool is_const,bool is_reverse>
3
inline void mtree<T,false>::sibling_iterator_impl<is_const,is_reverse>::forward_prev()
4
{
5
node_pointer_type p_node = &(*tree_)[off_];
6
p_node->prev_sibling_ ? off_ -= p_node->prev_sibling_ : off_ = tree_->size();
7
} (5)構造函數的實現,代碼如下:
1
template<typename T>
2
template<bool is_const,bool is_reverse>
3
inline mtree<T,false>::sibling_iterator_impl<is_const,is_reverse>::sibling_iterator_impl()
4
:base_type()
5
{
6
}
7
template<typename T>
8
template<bool is_const,bool is_reverse>
9
inline mtree<T,false>::sibling_iterator_impl<is_const,is_reverse>::sibling_iterator_impl(const base_type& iter)
10
:base_type(iter)
11
{
12
if (!iter.is_null())
13
{
14
node_pointer_type p_node = &(*tree_)[off_];
15
p_node->parent_ ? root_ = off_ - p_node->parent_: root_ = tree_->size();
16
}
17
18
} 在上面有參構造函數中,如果結點非空,會計算保存其父結點的偏移量,存于成員變量root_中,如果不存在父結點(當為根結點時),root_等于size()。
(6)公有方法的實現,代碼如下:
1
template<typename T>
2
template<bool is_const,bool is_reverse>
3
inline typename mtree<T,false>::template sibling_iterator_impl<is_const,is_reverse>&
4
mtree<T,false>::sibling_iterator_impl<is_const,is_reverse>::operator++()
5
{
6
increment(typename reverse_trait<is_reverse>::type());
7
return *this;
8
}
9
template<typename T>
10
template<bool is_const,bool is_reverse>
11
inline typename mtree<T,false>::template sibling_iterator_impl<is_const,is_reverse>&
12
mtree<T,false>::sibling_iterator_impl<is_const,is_reverse>::operator--()
13
{
14
decrement(typename reverse_trait<is_reverse>::type());
15
return *this;
16
}
17
template<typename T>
18
template<bool is_const,bool is_reverse>
19
inline typename mtree<T,false>::template sibling_iterator_impl<is_const,is_reverse>
20
mtree<T,false>::sibling_iterator_impl<is_const,is_reverse>::operator++(int)
21
{
22
sibling_iterator_impl<is_const,is_reverse> iter(*this);
23
++(*this);
24
return iter;
25
}
26
template<typename T>
27
template<bool is_const,bool is_reverse>
28
inline typename mtree<T,false>::template sibling_iterator_impl<is_const,is_reverse>
29
mtree<T,false>::sibling_iterator_impl<is_const,is_reverse>::operator--(int)
30
{
31
sibling_iterator_impl<is_const,is_reverse> iter(*this);
32
--(*this);
33
return iter;
34
}
35
template<typename T>
36
template<bool is_const,bool is_reverse>
37
inline typename mtree<T,false>::template sibling_iterator_impl<is_const,is_reverse>
38
mtree<T,false>::sibling_iterator_impl<is_const,is_reverse>::operator + (size_t off)
39
{
40
sibling_iterator_impl<is_const,is_reverse> iter(*this);
41
iter += off;
42
return iter;
43
}
44
template<typename T>
45
template<bool is_const,bool is_reverse>
46
inline typename mtree<T,false>::template sibling_iterator_impl<is_const,is_reverse>&
47
mtree<T,false>::sibling_iterator_impl<is_const,is_reverse>::operator += (size_t off)
48
{
49
while (off)
50
{
51
if (base_type::is_null()) break;
52
++(*this); --off;
53
}
54
return *this;
55
}
56
template<typename T>
57
template<bool is_const,bool is_reverse>
58
inline typename mtree<T,false>::template sibling_iterator_impl<is_const,is_reverse>
59
mtree<T,false>::sibling_iterator_impl<is_const,is_reverse>::operator - (size_t off)
60
{
61
sibling_iterator_impl<is_const,is_reverse> iter(*this);
62
iter -= off;
63
return iter;
64
}
65
template<typename T>
66
template<bool is_const,bool is_reverse>
67
inline typename mtree<T,false>::template sibling_iterator_impl<is_const,is_reverse>&
68
mtree<T,false>::sibling_iterator_impl<is_const,is_reverse>::operator -= (size_t off)
69
{
70
while (off)
71
{
72
if (base_type::is_null()) break;
73
--(*this); --off;
74
}
75
return *this;
76
}
77
template<typename T>
78
template<bool is_const,bool is_reverse>
79
inline typename mtree<T,false>::template sibling_iterator_impl<is_const,is_reverse>
80
mtree<T,false>::sibling_iterator_impl<is_const,is_reverse>::begin() const
81
{
82
sibling_iterator_impl<is_const,is_reverse> iter(*this);
83
iter.first(typename reverse_trait<is_reverse>::type());
84
return iter;
85
}
86
template<typename T>
87
template<bool is_const,bool is_reverse>
88
inline typename mtree<T,false>::template sibling_iterator_impl<is_const,is_reverse>
89
mtree<T,false>::sibling_iterator_impl<is_const,is_reverse>::end() const
90
{
91
sibling_iterator_impl<is_const,is_reverse> iter(*this);
92
if (tree_)
93
{
94
iter.off_ = tree_->size();
95
}
96
return iter;
97
}
使用示例 (1)正向遍歷某結點的兄弟,代碼如下:
1
mtree<int,false>::iterator_base node;
2
mtree<int,false>::sibling_iterator it = node;
3
mtree<int,false>::sibling_iterator last = --it.end();
4
for (it = it.begin();it!=it.end();++it)
5
{
6
cout << *it;
7
if (it!=last)
8
cout <<" ";
9
}
(2)反向遍歷某結點的兄弟,代碼如下:
1
mtree<int,false>::iterator_base node;
2
mtree<int,false>::reverse_sibling_iterator r_it = node;
3
mtree<int,false>::reverse_sibling_iterator r_last = --r_it.end();
4
for (r_it = r_it.begin();r_it!=r_it.end();++r_it)
5
{
6
cout << *r_it;
7
if (r_it!=r_last)
8
cout <<" ";
9
}
posted on 2011-08-20 21:06
春秋十二月 閱讀(1720)
評論(0) 編輯 收藏 引用 所屬分類:
Algorithm