• <ins id="pjuwb"></ins>
    <blockquote id="pjuwb"><pre id="pjuwb"></pre></blockquote>
    <noscript id="pjuwb"></noscript>
          <sup id="pjuwb"><pre id="pjuwb"></pre></sup>
            <dd id="pjuwb"></dd>
            <abbr id="pjuwb"></abbr>
            隨筆-162  評論-223  文章-30  trackbacks-0
            符號含義 
                E            表示滿足橢圓曲線Weierstrass方程上的點群
                K            代數(shù)閉域,用來限制Weierstrass方程的系數(shù)與E中的點
                E(K)        定義在K上的點群E
                E/K         定義在K上的橢圓曲線E
                End(E)    E上的自同態(tài)環(huán)


            域擴張分析 
              

            End(E)模與Z代數(shù) 
              

            極點首項系數(shù) 
              
              

            除子映射及同構(gòu)
              
              

            同種映射同態(tài)性的解釋 
              
              
              

            Hasse定理之引理證明的補充  
              

            撓曲線及其個數(shù)   
              

            有限域上的橢圓曲線  
              一種確定型群階計算法 
                
             
              奇素域上的算法應(yīng)用 
                
               

             GF域上的群階計算  
               
               

            Schoof算法正確性根本   
                一種計算橢圓曲線群的階的確定型多項式時間算法,確定型是因為算法內(nèi)部沒有隨機選擇/概率拋幣操作,多項式時間是因為域k的乘法與求逆總次數(shù)是O((logq)^6)
            qk的大小,乘法與求逆相對加減運算顯著耗時)。具體原理及流程詳見參考文獻[1]中5.2節(jié)。這里給出筆者的一些思考
            ​     1. Hasse定理(Frobenius自同態(tài)方程式)在扭點群上的限制亦成立,這決定了tl的一個同余方程成立,且在模l的最小非負剩余系下解是唯一的
            ​     2. 孫子定理保證了某取值范圍內(nèi)的一個tLL為各素因子l的乘積)的唯一解,即由tL各個素因子l的同余方程構(gòu)成的同余方程組的解是唯一的
            ​     3. L必須大于t取值上限的2倍。這是為了算法求得的解滿足上述2(否則在更小的L內(nèi)得到的解不唯一,因Lt上限或下限間的某數(shù)可以與tL同余)
            ​     4. 素因子l的選擇排除2與橢圓曲線特征p。這是因為算法構(gòu)造所依賴的一個引理之前提條件:為奇素數(shù)保證l次除子多項式屬于k[X],即引理論斷有意義;
                   不等于p保證檢測一個多項式f是否零多項式的充要條件成立,即可以用l次除子多項式去整除f來判斷。另l為素數(shù)保證了與其它除子多項式(及其冪次)互素
                 另外發(fā)現(xiàn)了算法的一處瑕疵,即第4步預(yù)計算除子多項式與Frobenius自同態(tài)的復(fù)合少了兩個值,這導致第5步可能崩潰,當依賴的后續(xù)兩個復(fù)合多項式?jīng)]被計算時。
              這個糾正可通過修改第4步擴大2個值,或第5步通過除子多項式的遞推公式按需計算

            扭點的階計算正確性根本  
                

            在密碼學中的應(yīng)用  
                選取原則  
                    1. 排除超奇異橢圓曲線。這是為避免MOV等約化攻擊,約化攻擊時間復(fù)雜度是亞指數(shù)
                    2. 有限域的選擇要使E(Fq)的群階足夠大。這是為了緩解ShanksPollard ρ攻擊
                    3. E(Fq)存在階為大素數(shù)的子群。這是為了抵抗Pohlig-Hellman攻擊
                  對于第1點,就排除了char(K)=2或3且j(E)=0對應(yīng)的如下標準形式曲線
                       Y23Y=X34X+α6(α3≠0) 與  Y2=X34X+α6 
                 
                 一種典型方案 
                       橢圓曲線及有限域的選擇使得|E(Fq)|=cm,且char(Fq) ∤ q+1-cm。其中m是一個大素數(shù)(通常不低于256位二進制長度,提供中長期安全性),c小于m
                     m階子群的生成元可通過以下方法確定:隨機選擇E上的一個有理點P,如果Q=cP為零元(即無窮遠點),則重復(fù)選擇,直到其不等于零元。
                     一旦找到了生成元,那么子群就可以構(gòu)造出來了。下面分析正確性  
                      


            參考文獻
              [1] 橢圓曲線及其在密碼學中的應(yīng)用—導引      Andreas Enge
              [2] 算法數(shù)論                                           裴定一、祝躍飛 
              [3] The Arithmetic of Elliptic Curves        Joseph H. Silverman
              [4] 標識密碼學                                        程朝輝
              [5] 代數(shù)學基礎(chǔ)與有限域                             林東岱
              [6] 抽象代數(shù)I                                          趙春來 徐明曜
              [7] 代數(shù)與數(shù)論                                        李超   周悅
            posted on 2024-11-10 21:45 春秋十二月 閱讀(339) 評論(0)  編輯 收藏 引用 所屬分類: Algorithm
            久久精品国产精品亚洲艾草网美妙| 精品人妻久久久久久888| 99久久99这里只有免费的精品| 69国产成人综合久久精品| 一级做a爰片久久毛片16| 国产精品久久久久久久app | 欧美日韩中文字幕久久久不卡 | 狠狠色婷婷久久综合频道日韩| 久久夜色精品国产网站| 久久精品?ⅴ无码中文字幕| 日产精品久久久久久久| 久久精品成人免费看| 亚洲欧美国产精品专区久久| 成人国内精品久久久久影院| 午夜视频久久久久一区| aaa级精品久久久国产片| 性做久久久久久久久浪潮| 99久久精品这里只有精品| 亚洲精品无码久久一线| 日韩影院久久| 久久99久久成人免费播放| 国产亚洲欧美成人久久片| 久久久久久精品成人免费图片| 国产叼嘿久久精品久久| 99re这里只有精品热久久| 亚洲级αV无码毛片久久精品| 欧美一级久久久久久久大片| 亚洲精品高清久久| 久久香蕉国产线看观看99| 久久发布国产伦子伦精品 | 久久精品人人做人人爽97| 伊人久久大香线蕉综合网站| 久久久网中文字幕| 久久久91精品国产一区二区三区 | 国产V综合V亚洲欧美久久| 麻豆一区二区99久久久久| 久久久亚洲裙底偷窥综合| 精品伊人久久久| 亚洲国产欧洲综合997久久| 精品国产乱码久久久久久人妻| 无码精品久久一区二区三区 |