如果你想在Windows平臺(tái)上構(gòu)建服務(wù)器應(yīng)用,那么I/O模型是你必須考慮的。Windows操作系統(tǒng)提供了選擇(Select)、異步選擇(WSAAsyncSelect)、事件選擇(WSAEventSelect)、重疊I/O(Overlapped I/O)和完成端口(Completion Port)共五種I/O模型。每一種模型均適用于一種特定的應(yīng)用場(chǎng)景。程序員應(yīng)該對(duì)自己的應(yīng)用需求非常明確,而且綜合考慮到程序的擴(kuò)展性和可移植性等因素,作出自己的選擇。
我會(huì)以一個(gè)回應(yīng)反射式服務(wù)器(與《Windows網(wǎng)絡(luò)編程》第八章一樣)來(lái)介紹這五種I/O模型。
我們假設(shè)客戶端的代碼如下(為代碼直觀,省去所有錯(cuò)誤檢查,以下同):
#include <WINSOCK2.H>
#include <stdio.h>
#define SERVER_ADDRESS "137.117.2.148"
#define PORT 5150
#define MSGSIZE 1024
#pragma comment(lib, "ws2_32.lib")
int main()
{
WSADATA wsaData;
SOCKET sClient;
SOCKADDR_IN server;
char szMessage[MSGSIZE];
int ret;
// Initialize Windows socket library
WSAStartup(0x0202, &wsaData);
// Create client socket
sClient = socket(AF_INET, SOCK_STREAM, IPPROTO_TCP);
// Connect to server
memset(&server, 0, sizeof(SOCKADDR_IN));
server.sin_family = AF_INET;
server.sin_addr.S_un.S_addr = inet_addr(SERVER_ADDRESS);
server.sin_port = htons(PORT);
connect(sClient, (struct sockaddr *)&server, sizeof(SOCKADDR_IN));
while (TRUE)
{
printf("Send:");
gets(szMessage);
// Send message
send(sClient, szMessage, strlen(szMessage), 0);
// Receive message
ret = recv(sClient, szMessage, MSGSIZE, 0);
szMessage[ret] = '\0';
printf("Received [%d bytes]: '%s'\n", ret, szMessage);
}
// Clean up
closesocket(sClient);
WSACleanup();
return 0;
}
客戶端所做的事情相當(dāng)簡(jiǎn)單,創(chuàng)建套接字,連接服務(wù)器,然后不停的發(fā)送和接收數(shù)據(jù)。
比較容易想到的一種服務(wù)器模型就是采用一個(gè)主線程,負(fù)責(zé)監(jiān)聽客戶端的連接請(qǐng)求,當(dāng)接收到某個(gè)客戶端的連接請(qǐng)求后,創(chuàng)建一個(gè)專門用于和該客戶端通信的套接字和一個(gè)輔助線程。以后該客戶端和服務(wù)器的交互都在這個(gè)輔助線程內(nèi)完成。這種方法比較直觀,程序非常簡(jiǎn)單而且可移植性好,但是不能利用平臺(tái)相關(guān)的特性。例如,如果連接數(shù)增多的時(shí)候(成千上萬(wàn)的連接),那么線程數(shù)成倍增長(zhǎng),操作系統(tǒng)忙于頻繁的線程間切換,而且大部分線程在其生命周期內(nèi)都是處于非活動(dòng)狀態(tài)的,這大大浪費(fèi)了系統(tǒng)的資源。所以,如果你已經(jīng)知道你的代碼只會(huì)運(yùn)行在Windows平臺(tái)上,建議采用Winsock I/O模型。
一.選擇模型
Select(選擇)模型是Winsock中最常見的I/O模型。之所以稱其為“Select模型”,是由于它的“中心思想”便是利用select函數(shù),實(shí)現(xiàn)對(duì)I/O的管理。最初設(shè)計(jì)該模型時(shí),主要面向的是某些使用UNIX操作系統(tǒng)的計(jì)算機(jī),它們采用的是Berkeley套接字方案。Select模型已集成到Winsock 1.1中,它使那些想避免在套接字調(diào)用過(guò)程中被無(wú)辜“鎖定”的應(yīng)用程序,采取一種有序的方式,同時(shí)進(jìn)行對(duì)多個(gè)套接字的管理。由于Winsock 1.1向后兼容于Berkeley套接字實(shí)施方案,所以假如有一個(gè)Berkeley套接字應(yīng)用使用了select函數(shù),那么從理論角度講,毋需對(duì)其進(jìn)行任何修改,便可正常運(yùn)行。(節(jié)選自《Windows網(wǎng)絡(luò)編程》第八章)
下面的這段程序就是利用選擇模型實(shí)現(xiàn)的Echo服務(wù)器的代碼(已經(jīng)不能再精簡(jiǎn)了):
#include <winsock.h>
#include <stdio.h>
#define PORT 5150
#define MSGSIZE 1024
#pragma comment(lib, "ws2_32.lib")
int g_iTotalConn = 0;
SOCKET g_CliSocketArr[FD_SETSIZE];
DWORD WINAPI WorkerThread(LPVOID lpParameter);
int main()
{
WSADATA wsaData;
SOCKET sListen, sClient;
SOCKADDR_IN local, client;
int iaddrSize = sizeof(SOCKADDR_IN);
DWORD dwThreadId;
// Initialize Windows socket library
WSAStartup(0x0202, &wsaData);
// Create listening socket
sListen = socket(AF_INET, SOCK_STREAM, IPPROTO_TCP);
// Bind
local.sin_addr.S_un.S_addr = htonl(INADDR_ANY);
local.sin_family = AF_INET;
local.sin_port = htons(PORT);
bind(sListen, (struct sockaddr *)&local, sizeof(SOCKADDR_IN));
// Listen
listen(sListen, 3);
// Create worker thread
CreateThread(NULL, 0, WorkerThread, NULL, 0, &dwThreadId);
while (TRUE)
{
// Accept a connection
sClient = accept(sListen, (struct sockaddr *)&client, &iaddrSize);
printf("Accepted client:%s:%d\n", inet_ntoa(client.sin_addr), ntohs(client.sin_port));
// Add socket to g_CliSocketArr
g_CliSocketArr[g_iTotalConn++] = sClient;
}
return 0;
}
DWORD WINAPI WorkerThread(LPVOID lpParam)
{
int i;
fd_set fdread;
int ret;
struct timeval tv = {1, 0};
char szMessage[MSGSIZE];
while (TRUE)
{
FD_ZERO(&fdread);
for (i = 0; i < g_iTotalConn; i++)
{
FD_SET(g_CliSocketArr[i], &fdread);
}
// We only care read event
ret = select(0, &fdread, NULL, NULL, &tv);
if (ret == 0)
{
// Time expired
continue;
}
for (i = 0; i < g_iTotalConn; i++)
{
if (FD_ISSET(g_CliSocketArr[i], &fdread))
{
// A read event happened on g_CliSocketArr[i]
ret = recv(g_CliSocketArr[i], szMessage, MSGSIZE, 0);
if (ret == 0 || (ret == SOCKET_ERROR && WSAGetLastError() == WSAECONNRESET))
{
// Client socket closed
printf("Client socket %d closed.\n", g_CliSocketArr[i]);
closesocket(g_CliSocketArr[i]);
if (i < g_iTotalConn - 1)
{
g_CliSocketArr[i--] = g_CliSocketArr[--g_iTotalConn];
}
}
else
{
// We received a message from client
szMessage[ret] = '\0';
send(g_CliSocketArr[i], szMessage, strlen(szMessage), 0);
}
}
}
}
return 0;
}
服務(wù)器的幾個(gè)主要?jiǎng)幼魅缦拢?br>1.創(chuàng)建監(jiān)聽套接字,綁定,監(jiān)聽;
2.創(chuàng)建工作者線程;
3.創(chuàng)建一個(gè)套接字?jǐn)?shù)組,用來(lái)存放當(dāng)前所有活動(dòng)的客戶端套接字,每accept一個(gè)連接就更新一次數(shù)組;
4.接受客戶端的連接。這里有一點(diǎn)需要注意的,就是我沒(méi)有重新定義FD_SETSIZE宏,所以服務(wù)器最多支持的并發(fā)連接數(shù)為64。而且,這里決不能無(wú)條件的accept,服務(wù)器應(yīng)該根據(jù)當(dāng)前的連接數(shù)來(lái)決定是否接受來(lái)自某個(gè)客戶端的連接。一種比較好的實(shí)現(xiàn)方案就是采用WSAAccept函數(shù),而且讓W(xué)SAAccept回調(diào)自己實(shí)現(xiàn)的Condition Function。如下所示:
int CALLBACK ConditionFunc(LPWSABUF lpCallerId,LPWSABUF lpCallerData, LPQOS lpSQOS,LPQOS lpGQOS,LPWSABUF lpCalleeId, LPWSABUF lpCalleeData,GROUP FAR * g,DWORD dwCallbackData)
{
if (當(dāng)前連接數(shù) < FD_SETSIZE)
return CF_ACCEPT;
else
return CF_REJECT;
}
工作者線程里面是一個(gè)死循環(huán),一次循環(huán)完成的動(dòng)作是:
1.將當(dāng)前所有的客戶端套接字加入到讀集fdread中;
2.調(diào)用select函數(shù);
3.查看某個(gè)套接字是否仍然處于讀集中,如果是,則接收數(shù)據(jù)。如果接收的數(shù)據(jù)長(zhǎng)度為0,或者發(fā)生WSAECONNRESET錯(cuò)誤,則表示客戶端套接字主動(dòng)關(guān)閉,這時(shí)需要將服務(wù)器中對(duì)應(yīng)的套接字所綁定的資源釋放掉,然后調(diào)整我們的套接字?jǐn)?shù)組(將數(shù)組中最后一個(gè)套接字挪到當(dāng)前的位置上)
除了需要有條件接受客戶端的連接外,還需要在連接數(shù)為0的情形下做特殊處理,因?yàn)槿绻x集中沒(méi)有任何套接字,select函數(shù)會(huì)立刻返回,這將導(dǎo)致工作者線程成為一個(gè)毫無(wú)停頓的死循環(huán),CPU的占用率馬上達(dá)到100%。
二.異步選擇
Winsock提供了一個(gè)有用的異步I/O模型。利用這個(gè)模型,應(yīng)用程序可在一個(gè)套接字上,接收以Windows消息為基礎(chǔ)的網(wǎng)絡(luò)事件通知。具體的做法是在建好一個(gè)套接字后,調(diào)用WSAAsyncSelect函數(shù)。該模型最早出現(xiàn)于Winsock的1.1版本中,用于幫助應(yīng)用程序開發(fā)者面向一些早期的16位Windows平臺(tái)(如Windows for Workgroups),適應(yīng)其“落后”的多任務(wù)消息環(huán)境。應(yīng)用程序仍可從這種模型中得到好處,特別是它們用一個(gè)標(biāo)準(zhǔn)的Windows例程(常稱為"WndProc"),對(duì)窗口消息進(jìn)行管理的時(shí)候。該模型亦得到了Microsoft Foundation Class(微軟基本類,MFC)對(duì)象CSocket的采納。(節(jié)選自《Windows網(wǎng)絡(luò)編程》第八章)
我還是先貼出代碼,然后做詳細(xì)解釋:
#include <winsock.h>
#include <tchar.h>
#define PORT 5150
#define MSGSIZE 1024
#define WM_SOCKET WM_USER+0
#pragma comment(lib, "ws2_32.lib")
LRESULT CALLBACK WndProc(HWND, UINT, WPARAM, LPARAM);
int WINAPI WinMain(HINSTANCE hInstance, HINSTANCE hPrevInstance, PSTR szCmdLine, int iCmdShow)
{
static TCHAR szAppName[] = _T("AsyncSelect Model");
HWND hwnd ;
MSG msg ;
WNDCLASS wndclass ;
wndclass.style = CS_HREDRAW | CS_VREDRAW ;
wndclass.lpfnWndProc = WndProc ;
wndclass.cbClsExtra = 0 ;
wndclass.cbWndExtra = 0 ;
wndclass.hInstance = hInstance ;
wndclass.hIcon = LoadIcon (NULL, IDI_APPLICATION) ;
wndclass.hCursor = LoadCursor (NULL, IDC_ARROW) ;
wndclass.hbrBackground = (HBRUSH) GetStockObject (WHITE_BRUSH) ;
wndclass.lpszMenuName = NULL ;
wndclass.lpszClassName = szAppName ;
if (!RegisterClass(&wndclass))
{
MessageBox (NULL, TEXT ("This program requires Windows NT!"), szAppName, MB_ICONERROR) ;
return 0 ;
}
hwnd = CreateWindow (szAppName, // window class name
TEXT ("AsyncSelect Model"), // window caption
WS_OVERLAPPEDWINDOW, // window style
CW_USEDEFAULT, // initial x position
CW_USEDEFAULT, // initial y position
CW_USEDEFAULT, // initial x size
CW_USEDEFAULT, // initial y size
NULL, // parent window handle
NULL, // window menu handle
hInstance, // program instance handle
NULL) ; // creation parameters
ShowWindow(hwnd, iCmdShow);
UpdateWindow(hwnd);
while (GetMessage(&msg, NULL, 0, 0))
{
TranslateMessage(&msg) ;
DispatchMessage(&msg) ;
}
return msg.wParam;
}
LRESULT CALLBACK WndProc (HWND hwnd, UINT message, WPARAM wParam, LPARAM lParam)
{
WSADATA wsd;
static SOCKET sListen;
SOCKET sClient;
SOCKADDR_IN local, client;
int ret, iAddrSize = sizeof(client);
char szMessage[MSGSIZE];
switch (message)
{
case WM_CREATE:
// Initialize Windows Socket library
WSAStartup(0x0202, &wsd);
// Create listening socket
sListen = socket(AF_INET, SOCK_STREAM, IPPROTO_TCP);
// Bind
local.sin_addr.S_un.S_addr = htonl(INADDR_ANY);
local.sin_family = AF_INET;
local.sin_port = htons(PORT);
bind(sListen, (struct sockaddr *)&local, sizeof(local));
// Listen
listen(sListen, 3);
// Associate listening socket with FD_ACCEPT event
WSAAsyncSelect(sListen, hwnd, WM_SOCKET, FD_ACCEPT);
return 0;
case WM_DESTROY:
closesocket(sListen);
WSACleanup();
PostQuitMessage(0);
return 0;
case WM_SOCKET:
if (WSAGETSELECTERROR(lParam))
{
closesocket(wParam);
break;
}
switch (WSAGETSELECTEVENT(lParam))
{
case FD_ACCEPT:
// Accept a connection from client
sClient = accept(wParam, (struct sockaddr *)&client, &iAddrSize);
// Associate client socket with FD_READ and FD_CLOSE event
WSAAsyncSelect(sClient, hwnd, WM_SOCKET, FD_READ | FD_CLOSE);
break;
case FD_READ:
ret = recv(wParam, szMessage, MSGSIZE, 0);
if (ret == 0 || ret == SOCKET_ERROR && WSAGetLastError() == WSAECONNRESET)
{
closesocket(wParam);
}
else
{
szMessage[ret] = '\0';
send(wParam, szMessage, strlen(szMessage), 0);
}
break;
case FD_CLOSE:
closesocket(wParam);
break;
}
return 0;
}
return DefWindowProc(hwnd, message, wParam, lParam);
}
在我看來(lái),WSAAsyncSelect是最簡(jiǎn)單的一種Winsock I/O模型(之所以說(shuō)它簡(jiǎn)單是因?yàn)橐粋€(gè)主線程就搞定了)。使用Raw Windows API寫過(guò)窗口類應(yīng)用程序的人應(yīng)該都能看得懂。這里,我們需要做的僅僅是:
1.在WM_CREATE消息處理函數(shù)中,初始化Windows Socket library,創(chuàng)建監(jiān)聽套接字,綁定,監(jiān)聽,并且調(diào)用WSAAsyncSelect函數(shù)表示我們關(guān)心在監(jiān)聽套接字上發(fā)生的FD_ACCEPT事件;
2.自定義一個(gè)消息WM_SOCKET,一旦在我們所關(guān)心的套接字(監(jiān)聽套接字和客戶端套接字)上發(fā)生了某個(gè)事件,系統(tǒng)就會(huì)調(diào)用WndProc并且message參數(shù)被設(shè)置為WM_SOCKET;
3.在WM_SOCKET的消息處理函數(shù)中,分別對(duì)FD_ACCEPT、FD_READ和FD_CLOSE事件進(jìn)行處理;
4.在窗口銷毀消息(WM_DESTROY)的處理函數(shù)中,我們關(guān)閉監(jiān)聽套接字,清除Windows Socket library
下面這張用于WSAAsyncSelect函數(shù)的網(wǎng)絡(luò)事件類型表可以讓你對(duì)各個(gè)網(wǎng)絡(luò)事件有更清楚的認(rèn)識(shí):
表1
FD_READ
|
應(yīng)用程序想要接收有關(guān)是否可讀的通知,以便讀入數(shù)據(jù)
|
FD_WRITE
|
應(yīng)用程序想要接收有關(guān)是否可寫的通知,以便寫入數(shù)據(jù)
|
FD_OOB
|
應(yīng)用程序想接收是否有帶外(OOB)數(shù)據(jù)抵達(dá)的通知
|
FD_ACCEPT
|
應(yīng)用程序想接收與進(jìn)入連接有關(guān)的通知
|
FD_CONNECT
|
應(yīng)用程序想接收與一次連接或者多點(diǎn)join操作完成的通知
|
FD_CLOSE
|
應(yīng)用程序想接收與套接字關(guān)閉有關(guān)的通知
|
FD_QOS
|
應(yīng)用程序想接收套接字“服務(wù)質(zhì)量”(QoS)發(fā)生更改的通知
|
FD_GROUP_QOS
|
應(yīng)用程序想接收套接字組“服務(wù)質(zhì)量”發(fā)生更改的通知(現(xiàn)在沒(méi)什么用處,為未來(lái)套接字組的使用保留)
|
FD_ROUTING_INTERFACE_CHANGE
|
應(yīng)用程序想接收在指定的方向上,與路由接口發(fā)生變化的通知
|
FD_ADDRESS_LIST_CHANGE
|
應(yīng)用程序想接收針對(duì)套接字的協(xié)議家族,本地地址列表發(fā)生變化的通知
|
三.事件選擇
Winsock提供了另一個(gè)有用的異步I/O模型。和WSAAsyncSelect模型類似的是,它也允許應(yīng)用程序在一個(gè)或多個(gè)套接字上,接收以事件為基礎(chǔ)的網(wǎng)絡(luò)事件通知。對(duì)于表1總結(jié)的、由WSAAsyncSelect模型采用的網(wǎng)絡(luò)事件來(lái)說(shuō),它們均可原封不動(dòng)地移植到新模型。在用新模型開發(fā)的應(yīng)用程序中,也能接收和處理所有那些事件。該模型最主要的差別在于網(wǎng)絡(luò)事件會(huì)投遞至一個(gè)事件對(duì)象句柄,而非投遞至一個(gè)窗口例程。(節(jié)選自《Windows網(wǎng)絡(luò)編程》第八章)
還是讓我們先看代碼然后進(jìn)行分析:
#include <winsock2.h>
#include <stdio.h>
#define PORT 5150
#define MSGSIZE 1024
#pragma comment(lib, "ws2_32.lib")
int g_iTotalConn = 0;
SOCKET g_CliSocketArr[MAXIMUM_WAIT_OBJECTS];
WSAEVENT g_CliEventArr[MAXIMUM_WAIT_OBJECTS];
DWORD WINAPI WorkerThread(LPVOID);
void Cleanup(int index);
int main()
{
WSADATA wsaData;
SOCKET sListen, sClient;
SOCKADDR_IN local, client;
DWORD dwThreadId;
int iaddrSize = sizeof(SOCKADDR_IN);
// Initialize Windows Socket library
WSAStartup(0x0202, &wsaData);
// Create listening socket
sListen = socket(AF_INET, SOCK_STREAM, IPPROTO_TCP);
// Bind
local.sin_addr.S_un.S_addr = htonl(INADDR_ANY);
local.sin_family = AF_INET;
local.sin_port = htons(PORT);
bind(sListen, (struct sockaddr *)&local, sizeof(SOCKADDR_IN));
// Listen
listen(sListen, 3);
// Create worker thread
CreateThread(NULL, 0, WorkerThread, NULL, 0, &dwThreadId);
while (TRUE)
{
// Accept a connection
sClient = accept(sListen, (struct sockaddr *)&client, &iaddrSize);
printf("Accepted client:%s:%d\n", inet_ntoa(client.sin_addr), ntohs(client.sin_port));
// Associate socket with network event
g_CliSocketArr[g_iTotalConn] = sClient;
g_CliEventArr[g_iTotalConn] = WSACreateEvent();
WSAEventSelect(g_CliSocketArr[g_iTotalConn],
g_CliEventArr[g_iTotalConn],
FD_READ | FD_CLOSE);
g_iTotalConn++;
}
}
DWORD WINAPI WorkerThread(LPVOID lpParam)
{
int ret, index;
WSANETWORKEVENTS NetworkEvents;
char szMessage[MSGSIZE];
while (TRUE)
{
ret = WSAWaitForMultipleEvents(g_iTotalConn, g_CliEventArr, FALSE, 1000, FALSE);
if (ret == WSA_WAIT_FAILED || ret == WSA_WAIT_TIMEOUT)
{
continue;
}
index = ret - WSA_WAIT_EVENT_0;
WSAEnumNetworkEvents(g_CliSocketArr[index], g_CliEventArr[index], &NetworkEvents);
if (NetworkEvents.lNetworkEvents & FD_READ)
{
// Receive message from client
ret = recv(g_CliSocketArr[index], szMessage, MSGSIZE, 0);
if (ret == 0 || (ret == SOCKET_ERROR && WSAGetLastError() == WSAECONNRESET))
{
Cleanup(index);
}
else
{
szMessage[ret] = '\0';
send(g_CliSocketArr[index], szMessage, strlen(szMessage), 0);
}
}
if (NetworkEvents.lNetworkEvents & FD_CLOSE)
{
Cleanup(index);
}
}
return 0;
}
void Cleanup(int index)
{
closesocket(g_CliSocketArr[index]);
WSACloseEvent(g_CliEventArr[index]);
if (index < g_iTotalConn - 1)
{
g_CliSocketArr[index] = g_CliSocketArr[g_iTotalConn - 1];
g_CliEventArr[index] = g_CliEventArr[g_iTotalConn - 1];
}
g_iTotalConn--;
}
事件選擇模型也比較簡(jiǎn)單,實(shí)現(xiàn)起來(lái)也不是太復(fù)雜,它的基本思想是將每個(gè)套接字都和一個(gè)WSAEVENT對(duì)象對(duì)應(yīng)起來(lái),并且在關(guān)聯(lián)的時(shí)候指定需要關(guān)注的哪些網(wǎng)絡(luò)事件。一旦在某個(gè)套接字上發(fā)生了我們關(guān)注的事件(FD_READ和FD_CLOSE),與之相關(guān)聯(lián)的WSAEVENT對(duì)象被Signaled。程序定義了兩個(gè)全局?jǐn)?shù)組,一個(gè)套接字?jǐn)?shù)組,一個(gè)WSAEVENT對(duì)象數(shù)組,其大小都是MAXIMUM_WAIT_OBJECTS(64),兩個(gè)數(shù)組中的元素一一對(duì)應(yīng)。
同樣的,這里的程序沒(méi)有考慮兩個(gè)問(wèn)題,一是不能無(wú)條件的調(diào)用accept,因?yàn)槲覀冎С值牟l(fā)連接數(shù)有限。解決方法是將套接字按MAXIMUM_WAIT_OBJECTS分組,每MAXIMUM_WAIT_OBJECTS個(gè)套接字一組,每一組分配一個(gè)工作者線程;或者采用WSAAccept代替accept,并回調(diào)自己定義的Condition Function。第二個(gè)問(wèn)題是沒(méi)有對(duì)連接數(shù)為0的情形做特殊處理,程序在連接數(shù)為0的時(shí)候CPU占用率為100%。
四.重疊I/O模型
Winsock2的發(fā)布使得Socket I/O有了和文件I/O統(tǒng)一的接口。我們可以通過(guò)使用Win32文件操縱函數(shù)ReadFile和WriteFile來(lái)進(jìn)行Socket I/O。伴隨而來(lái)的,用于普通文件I/O的重疊I/O模型和完成端口模型對(duì)Socket I/O也適用了。這些模型的優(yōu)點(diǎn)是可以達(dá)到更佳的系統(tǒng)性能,但是實(shí)現(xiàn)較為復(fù)雜,里面涉及較多的C語(yǔ)言技巧。例如我們?cè)谕瓿啥丝谀P椭袝?huì)經(jīng)常用到所謂的“尾隨數(shù)據(jù)”。
1.用事件通知方式實(shí)現(xiàn)的重疊I/O模型
#include <winsock2.h>
#include <stdio.h>
#define PORT 5150
#define MSGSIZE 1024
#pragma comment(lib, "ws2_32.lib")
typedef struct
{
WSAOVERLAPPED overlap;
WSABUF Buffer;
char szMessage[MSGSIZE];
DWORD NumberOfBytesRecvd;
DWORD Flags;
}PER_IO_OPERATION_DATA, *LPPER_IO_OPERATION_DATA;
int g_iTotalConn = 0;
SOCKET g_CliSocketArr[MAXIMUM_WAIT_OBJECTS];
WSAEVENT g_CliEventArr[MAXIMUM_WAIT_OBJECTS];
LPPER_IO_OPERATION_DATA g_pPerIODataArr[MAXIMUM_WAIT_OBJECTS];
DWORD WINAPI WorkerThread(LPVOID);
void Cleanup(int);
int main()
{
WSADATA wsaData;
SOCKET sListen, sClient;
SOCKADDR_IN local, client;
DWORD dwThreadId;
int iaddrSize = sizeof(SOCKADDR_IN);
// Initialize Windows Socket library
WSAStartup(0x0202, &wsaData);
// Create listening socket
sListen = socket(AF_INET, SOCK_STREAM, IPPROTO_TCP);
// Bind
local.sin_addr.S_un.S_addr = htonl(INADDR_ANY);
local.sin_family = AF_INET;
local.sin_port = htons(PORT);
bind(sListen, (struct sockaddr *)&local, sizeof(SOCKADDR_IN));
// Listen
listen(sListen, 3);
// Create worker thread
CreateThread(NULL, 0, WorkerThread, NULL, 0, &dwThreadId);
while (TRUE)
{
// Accept a connection
sClient = accept(sListen, (struct sockaddr *)&client, &iaddrSize);
printf("Accepted client:%s:%d\n", inet_ntoa(client.sin_addr), ntohs(client.sin_port));
g_CliSocketArr[g_iTotalConn] = sClient;
// Allocate a PER_IO_OPERATION_DATA structure
g_pPerIODataArr[g_iTotalConn] = (LPPER_IO_OPERATION_DATA)HeapAlloc(
GetProcessHeap(),
HEAP_ZERO_MEMORY,
sizeof(PER_IO_OPERATION_DATA));
g_pPerIODataArr[g_iTotalConn]->Buffer.len = MSGSIZE;
g_pPerIODataArr[g_iTotalConn]->Buffer.buf = g_pPerIODataArr[g_iTotalConn]->szMessage;
g_CliEventArr[g_iTotalConn] = g_pPerIODataArr[g_iTotalConn]->overlap.hEvent = WSACreateEvent();
// Launch an asynchronous operation
WSARecv(
g_CliSocketArr[g_iTotalConn],
&g_pPerIODataArr[g_iTotalConn]->Buffer,
1,
&g_pPerIODataArr[g_iTotalConn]->NumberOfBytesRecvd,
&g_pPerIODataArr[g_iTotalConn]->Flags,
&g_pPerIODataArr[g_iTotalConn]->overlap,
NULL);
g_iTotalConn++;
}
closesocket(sListen);
WSACleanup();
return 0;
}
DWORD WINAPI WorkerThread(LPVOID lpParam)
{
int ret, index;
DWORD cbTransferred;
while (TRUE)
{
ret = WSAWaitForMultipleEvents(g_iTotalConn, g_CliEventArr, FALSE, 1000, FALSE);
if (ret == WSA_WAIT_FAILED || ret == WSA_WAIT_TIMEOUT)
{
continue;
}
index = ret - WSA_WAIT_EVENT_0;
WSAResetEvent(g_CliEventArr[index]);
WSAGetOverlappedResult(
g_CliSocketArr[index],
&g_pPerIODataArr[index]->overlap,
&cbTransferred,
TRUE,
&g_pPerIODataArr[g_iTotalConn]->Flags);
if (cbTransferred == 0)
{
// The connection was closed by client
Cleanup(index);
}
else
{
// g_pPerIODataArr[index]->szMessage contains the received data
g_pPerIODataArr[index]->szMessage[cbTransferred] = '\0';
send(g_CliSocketArr[index], g_pPerIODataArr[index]->szMessage,\
cbTransferred, 0);
// Launch another asynchronous operation
WSARecv(
g_CliSocketArr[index],
&g_pPerIODataArr[index]->Buffer,
1,
&g_pPerIODataArr[index]->NumberOfBytesRecvd,
&g_pPerIODataArr[index]->Flags,
&g_pPerIODataArr[index]->overlap,
NULL);
}
}
return 0;
}
void Cleanup(int index)
{
closesocket(g_CliSocketArr[index]);
WSACloseEvent(g_CliEventArr[index]);
HeapFree(GetProcessHeap(), 0, g_pPerIODataArr[index]);
if (index < g_iTotalConn - 1)
{
g_CliSocketArr[index] = g_CliSocketArr[g_iTotalConn - 1];
g_CliEventArr[index] = g_CliEventArr[g_iTotalConn - 1];
g_pPerIODataArr[index] = g_pPerIODataArr[g_iTotalConn - 1];
}
g_pPerIODataArr[--g_iTotalConn] = NULL;
}
這個(gè)模型與上述其他模型不同的是它使用Winsock2提供的異步I/O函數(shù)WSARecv。在調(diào)用WSARecv時(shí),指定一個(gè)WSAOVERLAPPED結(jié)構(gòu),這個(gè)調(diào)用不是阻塞的,也就是說(shuō),它會(huì)立刻返回。一旦有數(shù)據(jù)到達(dá)的時(shí)候,被指定的WSAOVERLAPPED結(jié)構(gòu)中的hEvent被Signaled。由于下面這個(gè)語(yǔ)句
g_CliEventArr[g_iTotalConn] = g_pPerIODataArr[g_iTotalConn]->overlap.hEvent;
使得與該套接字相關(guān)聯(lián)的WSAEVENT對(duì)象也被Signaled,所以WSAWaitForMultipleEvents的調(diào)用操作成功返回。我們現(xiàn)在應(yīng)該做的就是用與調(diào)用WSARecv相同的WSAOVERLAPPED結(jié)構(gòu)為參數(shù)調(diào)用WSAGetOverlappedResult,從而得到本次I/O傳送的字節(jié)數(shù)等相關(guān)信息。在取得接收的數(shù)據(jù)后,把數(shù)據(jù)原封不動(dòng)的發(fā)送到客戶端,然后重新激活一個(gè)WSARecv異步操作。
2.用完成例程方式實(shí)現(xiàn)的重疊I/O模型
#include <WINSOCK2.H>
#include <stdio.h>
#define PORT 5150
#define MSGSIZE 1024
#pragma comment(lib, "ws2_32.lib")
typedef struct
{
WSAOVERLAPPED overlap;
WSABUF Buffer;
char szMessage[MSGSIZE];
DWORD NumberOfBytesRecvd;
DWORD Flags;
SOCKET sClient;
}PER_IO_OPERATION_DATA, *LPPER_IO_OPERATION_DATA;
DWORD WINAPI WorkerThread(LPVOID);
void CALLBACK CompletionROUTINE(DWORD, DWORD, LPWSAOVERLAPPED, DWORD);
SOCKET g_sNewClientConnection;
BOOL g_bNewConnectionArrived = FALSE;
int main()
{
WSADATA wsaData;
SOCKET sListen;
SOCKADDR_IN local, client;
DWORD dwThreadId;
int iaddrSize = sizeof(SOCKADDR_IN);
// Initialize Windows Socket library
WSAStartup(0x0202, &wsaData);
// Create listening socket
sListen = socket(AF_INET, SOCK_STREAM, IPPROTO_TCP);
// Bind
local.sin_addr.S_un.S_addr = htonl(INADDR_ANY);
local.sin_family = AF_INET;
local.sin_port = htons(PORT);
bind(sListen, (struct sockaddr *)&local, sizeof(SOCKADDR_IN));
// Listen
listen(sListen, 3);
// Create worker thread
CreateThread(NULL, 0, WorkerThread, NULL, 0, &dwThreadId);
while (TRUE)
{
// Accept a connection
g_sNewClientConnection = accept(sListen, (struct sockaddr *)&client, &iaddrSize);
g_bNewConnectionArrived = TRUE;
printf("Accepted client:%s:%d\n", inet_ntoa(client.sin_addr), ntohs(client.sin_port));
}
}
DWORD WINAPI WorkerThread(LPVOID lpParam)
{
LPPER_IO_OPERATION_DATA lpPerIOData = NULL;
while (TRUE)
{
if (g_bNewConnectionArrived)
{
// Launch an asynchronous operation for new arrived connection
lpPerIOData = (LPPER_IO_OPERATION_DATA)HeapAlloc(
GetProcessHeap(),
HEAP_ZERO_MEMORY,
sizeof(PER_IO_OPERATION_DATA));
lpPerIOData->Buffer.len = MSGSIZE;
lpPerIOData->Buffer.buf = lpPerIOData->szMessage;
lpPerIOData->sClient = g_sNewClientConnection;
WSARecv(lpPerIOData->sClient,
&lpPerIOData->Buffer,
1,
&lpPerIOData->NumberOfBytesRecvd,
&lpPerIOData->Flags,
&lpPerIOData->overlap,
CompletionROUTINE);
g_bNewConnectionArrived = FALSE;
}
SleepEx(1000, TRUE);
}
return 0;
}
void CALLBACK CompletionROUTINE(DWORD dwError,
DWORD cbTransferred,
LPWSAOVERLAPPED lpOverlapped,
DWORD dwFlags)
{
LPPER_IO_OPERATION_DATA lpPerIOData = (LPPER_IO_OPERATION_DATA)lpOverlapped;
if (dwError != 0 || cbTransferred == 0)
{
// Connection was closed by client
closesocket(lpPerIOData->sClient);
HeapFree(GetProcessHeap(), 0, lpPerIOData);
}
else
{
lpPerIOData->szMessage[cbTransferred] = '\0';
send(lpPerIOData->sClient, lpPerIOData->szMessage, cbTransferred, 0);
// Launch another asynchronous operation
memset(&lpPerIOData->overlap, 0, sizeof(WSAOVERLAPPED));
lpPerIOData->Buffer.len = MSGSIZE;
lpPerIOData->Buffer.buf = lpPerIOData->szMessage;
WSARecv(lpPerIOData->sClient,
&lpPerIOData->Buffer,
1,
&lpPerIOData->NumberOfBytesRecvd,
&lpPerIOData->Flags,
&lpPerIOData->overlap,
CompletionROUTINE);
}
}
用完成例程來(lái)實(shí)現(xiàn)重疊I/O比用事件通知簡(jiǎn)單得多。在這個(gè)模型中,主線程只用不停的接受連接即可;輔助線程判斷有沒(méi)有新的客戶端連接被建立,如果有,就為那個(gè)客戶端套接字激活一個(gè)異步的WSARecv操作,然后調(diào)用SleepEx使線程處于一種可警告的等待狀態(tài),以使得I/O完成后CompletionROUTINE可以被內(nèi)核調(diào)用。如果輔助線程不調(diào)用SleepEx,則內(nèi)核在完成一次I/O操作后,無(wú)法調(diào)用完成例程(因?yàn)橥瓿衫痰倪\(yùn)行應(yīng)該和當(dāng)初激活WSARecv異步操作的代碼在同一個(gè)線程之內(nèi))。
完成例程內(nèi)的實(shí)現(xiàn)代碼比較簡(jiǎn)單,它取出接收到的數(shù)據(jù),然后將數(shù)據(jù)原封不動(dòng)的發(fā)送給客戶端,最后重新激活另一個(gè)WSARecv異步操作。注意,在這里用到了“尾隨數(shù)據(jù)”。我們?cè)谡{(diào)用WSARecv的時(shí)候,參數(shù)lpOverlapped實(shí)際上指向一個(gè)比它大得多的結(jié)構(gòu)PER_IO_OPERATION_DATA,這個(gè)結(jié)構(gòu)除了WSAOVERLAPPED以外,還被我們附加了緩沖區(qū)的結(jié)構(gòu)信息,另外還包括客戶端套接字等重要的信息。這樣,在完成例程中通過(guò)參數(shù)lpOverlapped拿到的不僅僅是WSAOVERLAPPED結(jié)構(gòu),還有后邊尾隨的包含客戶端套接字和接收數(shù)據(jù)緩沖區(qū)等重要信息。這樣的C語(yǔ)言技巧在我后面介紹完成端口的時(shí)候還會(huì)使用到。
五.完成端口模型
“完成端口”模型是迄今為止最為復(fù)雜的一種I/O模型。然而,假若一個(gè)應(yīng)用程序同時(shí)需要管理為數(shù)眾多的套接字,那么采用這種模型,往往可以達(dá)到最佳的系統(tǒng)性能!但不幸的是,該模型只適用于Windows NT和Windows 2000操作系統(tǒng)。因其設(shè)計(jì)的復(fù)雜性,只有在你的應(yīng)用程序需要同時(shí)管理數(shù)百乃至上千個(gè)套接字的時(shí)候,而且希望隨著系統(tǒng)內(nèi)安裝的CPU數(shù)量的增多,應(yīng)用程序的性能也可以線性提升,才應(yīng)考慮采用“完成端口”模型。要記住的一個(gè)基本準(zhǔn)則是,假如要為Windows NT或Windows 2000開發(fā)高性能的服務(wù)器應(yīng)用,同時(shí)希望為大量套接字I/O請(qǐng)求提供服務(wù)(Web服務(wù)器便是這方面的典型例子),那么I/O完成端口模型便是最佳選擇!(節(jié)選自《Windows網(wǎng)絡(luò)編程》第八章)
完成端口模型是我最喜愛的一種模型。雖然其實(shí)現(xiàn)比較復(fù)雜(其實(shí)我覺得它的實(shí)現(xiàn)比用事件通知實(shí)現(xiàn)的重疊I/O簡(jiǎn)單多了),但其效率是驚人的。我在T公司的時(shí)候曾經(jīng)幫同事寫過(guò)一個(gè)郵件服務(wù)器的性能測(cè)試程序,用的就是完成端口模型。結(jié)果表明,完成端口模型在多連接(成千上萬(wàn))的情況下,僅僅依靠一兩個(gè)輔助線程,就可以達(dá)到非常高的吞吐量。下面我還是從代碼說(shuō)起:
#include <WINSOCK2.H>
#include <stdio.h>
#define PORT 5150
#define MSGSIZE 1024
#pragma comment(lib, "ws2_32.lib")
typedef enum
{
RECV_POSTED
}OPERATION_TYPE;
typedef struct
{
WSAOVERLAPPED overlap;
WSABUF Buffer;
char szMessage[MSGSIZE];
DWORD NumberOfBytesRecvd;
DWORD Flags;
OPERATION_TYPE OperationType;
}PER_IO_OPERATION_DATA, *LPPER_IO_OPERATION_DATA;
DWORD WINAPI WorkerThread(LPVOID);
int main()
{
WSADATA wsaData;
SOCKET sListen, sClient;
SOCKADDR_IN local, client;
DWORD i, dwThreadId;
int iaddrSize = sizeof(SOCKADDR_IN);
HANDLE CompletionPort = INVALID_HANDLE_VALUE;
SYSTEM_INFO systeminfo;
LPPER_IO_OPERATION_DATA lpPerIOData = NULL;
// Initialize Windows Socket library
WSAStartup(0x0202, &wsaData);
// Create completion port
CompletionPort = CreateIoCompletionPort(INVALID_HANDLE_VALUE, NULL, 0, 0);
// Create worker thread
GetSystemInfo(&systeminfo);
for (i = 0; i < systeminfo.dwNumberOfProcessors; i++)
{
CreateThread(NULL, 0, WorkerThread, CompletionPort, 0, &dwThreadId);
}
// Create listening socket
sListen = socket(AF_INET, SOCK_STREAM, IPPROTO_TCP);
// Bind
local.sin_addr.S_un.S_addr = htonl(INADDR_ANY);
local.sin_family = AF_INET;
local.sin_port = htons(PORT);
bind(sListen, (struct sockaddr *)&local, sizeof(SOCKADDR_IN));
// Listen
listen(sListen, 3);
while (TRUE)
{
// Accept a connection
sClient = accept(sListen, (struct sockaddr *)&client, &iaddrSize);
printf("Accepted client:%s:%d\n", inet_ntoa(client.sin_addr), ntohs(client.sin_port));
// Associate the newly arrived client socket with completion port
CreateIoCompletionPort((HANDLE)sClient, CompletionPort, (DWORD)sClient, 0);
// Launch an asynchronous operation for new arrived connection
lpPerIOData = (LPPER_IO_OPERATION_DATA)HeapAlloc(
GetProcessHeap(),
HEAP_ZERO_MEMORY,
sizeof(PER_IO_OPERATION_DATA));
lpPerIOData->Buffer.len = MSGSIZE;
lpPerIOData->Buffer.buf = lpPerIOData->szMessage;
lpPerIOData->OperationType = RECV_POSTED;
WSARecv(sClient,
&lpPerIOData->Buffer,
1,
&lpPerIOData->NumberOfBytesRecvd,
&lpPerIOData->Flags,
&lpPerIOData->overlap,
NULL);
}
PostQueuedCompletionStatus(CompletionPort, 0xFFFFFFFF, 0, NULL);
CloseHandle(CompletionPort);
closesocket(sListen);
WSACleanup();
return 0;
}
DWORD WINAPI WorkerThread(LPVOID CompletionPortID)
{
HANDLE CompletionPort=(HANDLE)CompletionPortID;
DWORD dwBytesTransferred;
SOCKET sClient;
LPPER_IO_OPERATION_DATA lpPerIOData = NULL;
while (TRUE)
{
GetQueuedCompletionStatus(
CompletionPort,
&dwBytesTransferred,
&sClient,
(LPOVERLAPPED *)&lpPerIOData,
INFINITE);
if (dwBytesTransferred == 0xFFFFFFFF)
{
return 0;
}
if (lpPerIOData->OperationType == RECV_POSTED)
{
if (dwBytesTransferred == 0)
{
// Connection was closed by client
closesocket(sClient);
HeapFree(GetProcessHeap(), 0, lpPerIOData);
}
else
{
lpPerIOData->szMessage[dwBytesTransferred] = '\0';
send(sClient, lpPerIOData->szMessage, dwBytesTransferred, 0);
// Launch another asynchronous operation for sClient
memset(lpPerIOData, 0, sizeof(PER_IO_OPERATION_DATA));
lpPerIOData->Buffer.len = MSGSIZE;
lpPerIOData->Buffer.buf = lpPerIOData->szMessage;
lpPerIOData->OperationType = RECV_POSTED;
WSARecv(sClient,
&lpPerIOData->Buffer,
1,
&lpPerIOData->NumberOfBytesRecvd,
&lpPerIOData->Flags,
&lpPerIOData->overlap,
NULL);
}
}
}
return 0;
}
首先,說(shuō)說(shuō)主線程:
1.創(chuàng)建完成端口對(duì)象
2.創(chuàng)建工作者線程(這里工作者線程的數(shù)量是按照CPU的個(gè)數(shù)來(lái)決定的,這樣可以達(dá)到最佳性能)
3.創(chuàng)建監(jiān)聽套接字,綁定,監(jiān)聽,然后程序進(jìn)入循環(huán)
4.在循環(huán)中,我做了以下幾件事情:
(1).接受一個(gè)客戶端連接
(2).將該客戶端套接字與完成端口綁定到一起(還是調(diào)用CreateIoCompletionPort,但這次的作用不同),注意,按道理來(lái)講,此時(shí)傳遞給CreateIoCompletionPort的第三個(gè)參數(shù)應(yīng)該是一個(gè)完成鍵,一般來(lái)講,程序都是傳遞一個(gè)單句柄數(shù)據(jù)結(jié)構(gòu)的地址,該單句柄數(shù)據(jù)包含了和該客戶端連接有關(guān)的信息,由于我們只關(guān)心套接字句柄,所以直接將套接字句柄作為完成鍵傳遞;
(3).觸發(fā)一個(gè)WSARecv異步調(diào)用,這次又用到了“尾隨數(shù)據(jù)”,使接收數(shù)據(jù)所用的緩沖區(qū)緊跟在WSAOVERLAPPED對(duì)象之后,此外,還有操作類型等重要信息。
在工作者線程的循環(huán)中,我們
1.調(diào)用GetQueuedCompletionStatus取得本次I/O的相關(guān)信息(例如套接字句柄、傳送的字節(jié)數(shù)、單I/O數(shù)據(jù)結(jié)構(gòu)的地址等等)
2.通過(guò)單I/O數(shù)據(jù)結(jié)構(gòu)找到接收數(shù)據(jù)緩沖區(qū),然后將數(shù)據(jù)原封不動(dòng)的發(fā)送到客戶端
3.再次觸發(fā)一個(gè)WSARecv異步操作
六.五種I/O模型的比較
我會(huì)從以下幾個(gè)方面來(lái)進(jìn)行比較
*有無(wú)每線程64連接數(shù)限制
如果在選擇模型中沒(méi)有重新定義FD_SETSIZE宏,則每個(gè)fd_set默認(rèn)可以裝下64個(gè)SOCKET。同樣的,受MAXIMUM_WAIT_OBJECTS宏的影響,事件選擇、用事件通知實(shí)現(xiàn)的重疊I/O都有每線程最大64連接數(shù)限制。如果連接數(shù)成千上萬(wàn),則必須對(duì)客戶端套接字進(jìn)行分組,這樣,勢(shì)必增加程序的復(fù)雜度。
相反,異步選擇、用完成例程實(shí)現(xiàn)的重疊I/O和完成端口不受此限制。
*線程數(shù)
除了異步選擇以外,其他模型至少需要2個(gè)線程。一個(gè)主線程和一個(gè)輔助線程。同樣的,如果連接數(shù)大于64,則選擇模型、事件選擇和用事件通知實(shí)現(xiàn)的重疊I/O的線程數(shù)還要增加。
*實(shí)現(xiàn)的復(fù)雜度
我的個(gè)人看法是,在實(shí)現(xiàn)難度上,異步選擇<選擇<用完成例程實(shí)現(xiàn)的重疊I/O<事件選擇<完成端口<用事件通知實(shí)現(xiàn)的重疊I/O
*性能
由于選擇模型中每次都要重設(shè)讀集,在select函數(shù)返回后還要針對(duì)所有套接字進(jìn)行逐一測(cè)試,我的感覺是效率比較差;完成端口和用完成例程實(shí)現(xiàn)的重疊I/O基本上不涉及全局?jǐn)?shù)據(jù),效率應(yīng)該是最高的,而且在多處理器情形下完成端口還要高一些;事件選擇和用事件通知實(shí)現(xiàn)的重疊I/O在實(shí)現(xiàn)機(jī)制上都是采用WSAWaitForMultipleEvents,感覺效率差不多;至于異步選擇,不好比較。所以我的結(jié)論是:選擇<用事件通知實(shí)現(xiàn)的重疊I/O<事件選擇<用完成例程實(shí)現(xiàn)的重疊I/O<完成端口