• <ins id="pjuwb"></ins>
    <blockquote id="pjuwb"><pre id="pjuwb"></pre></blockquote>
    <noscript id="pjuwb"></noscript>
          <sup id="pjuwb"><pre id="pjuwb"></pre></sup>
            <dd id="pjuwb"></dd>
            <abbr id="pjuwb"></abbr>

            POJ 1459 Power Network 最大網絡流

            Description

            A power network consists of nodes (power stations, consumers and dispatchers) connected by power transport lines. A node u may be supplied with an amount s(u) >= 0 of power, may produce an amount 0 <= p(u) <= pmax(u) of power, may consume an amount 0 <= c(u) <= min(s(u),cmax(u)) of power, and may deliver an amount d(u)=s(u)+p(u)-c(u) of power. The following restrictions apply: c(u)=0 for any power station, p(u)=0 for any consumer, and p(u)=c(u)=0 for any dispatcher. There is at most one power transport line (u,v) from a node u to a node v in the net; it transports an amount 0 <= l(u,v) <= lmax(u,v) of power delivered by u to v. Let Con=Σuc(u) be the power consumed in the net. The problem is to compute the maximum value of Con.

            An example is in figure 1. The label x/y of power station u shows that p(u)=x and pmax(u)=y. The label x/y of consumer u shows that c(u)=x and cmax(u)=y. The label x/y of power transport line (u,v) shows that l(u,v)=x and lmax(u,v)=y. The power consumed is Con=6. Notice that there are other possible states of the network but the value of Con cannot exceed 6.

            Input

            There are several data sets in the input. Each data set encodes a power network. It starts with four integers: 0 <= n <= 100 (nodes), 0 <= np <= n (power stations), 0 <= nc <= n (consumers), and 0 <= m <= n^2 (power transport lines). Follow m data triplets (u,v)z, where u and v are node identifiers (starting from 0) and 0 <= z <= 1000 is the value of lmax(u,v). Follow np doublets (u)z, where u is the identifier of a power station and 0 <= z <= 10000 is the value of pmax(u). The data set ends with nc doublets (u)z, where u is the identifier of a consumer and 0 <= z <= 10000 is the value of cmax(u). All input numbers are integers. Except the (u,v)z triplets and the (u)z doublets, which do not contain white spaces, white spaces can occur freely in input. Input data terminate with an end of file and are correct.

            Output

            For each data set from the input, the program prints on the standard output the maximum amount of power that can be consumed in the corresponding network. Each result has an integral value and is printed from the beginning of a separate line.

            Sample Input

            2 1 1 2 (0,1)20 (1,0)10 (0)15 (1)20
            7 2 3 13 (0,0)1 (0,1)2 (0,2)5 (1,0)1 (1,2)8 (2,3)1 (2,4)7
            (3,5)2 (3,6)5 (4,2)7 (4,3)5 (4,5)1 (6,0)5
            (0)5 (1)2 (3)2 (4)1 (5)4

            Sample Output

            15
            6

            Hint

            The sample input contains two data sets. The first data set encodes a network with 2 nodes, power station 0 with pmax(0)=15 and consumer 1 with cmax(1)=20, and 2 power transport lines with lmax(0,1)=20 and lmax(1,0)=10. The maximum value of Con is 15. The second data set encodes the network from figure 1.
               
                輸入分別為m個點,a個發電站,b個用戶,n條邊;接下去是n條邊的信息(u,v)cost,cost表示邊(u,v)的最大流量;a個發電站的信息(u)cost,cost表示發電站u能提供的最大流量;b個用戶的信息(v)cost,cost表示每個用戶v能接受的最大流量。
                典型的最大網絡流中多源多匯的問題,在圖中添加1個源點S和匯點T,將S和每個發電站相連,邊的權值是發電站能提供的最大流量;將每個用戶和T相連,邊的權值是每個用戶能接受的最大流量。從而轉化成了一般的最大網絡流問題,然后求解。
            #include <iostream>
            #include 
            <queue>
            using namespace std;

            const int MAXN = 110;
            const int INF = 0x7FFFFFFF;
            int n,m,start,end;
            int path[MAXN],flow[MAXN],map[MAXN][MAXN];
            queue
            <int> q;

            int bfs(){
                
            int i,t;
                
            while(!q.empty()) q.pop();
                memset(path,
            -1,sizeof(path));
                path[start]
            =0,flow[start]=INF;
                q.push(start);
                
            while(!q.empty()){
                    t
            =q.front();
                    q.pop();
                    
            if(t==end) break;
                    
            for(i=1;i<=m;i++){
                        
            if(i!=start && path[i]==-1 && map[t][i]){
                            flow[i]
            =flow[t]<map[t][i]?flow[t]:map[t][i];
                            q.push(i);
                            path[i]
            =t;
                        }

                    }

                }

                
            if(path[end]==-1return -1;
                
            return flow[end];                   
            }

            int Edmonds_Karp(){
                
            int max_flow=0,step,now,pre;
                
            while((step=bfs())!=-1){
                    max_flow
            +=step;
                    now
            =end;
                    
            while(now!=start){
                        pre
            =path[now];
                        map[pre][now]
            -=step;
                        map[now][pre]
            +=step;
                        now
            =pre;
                    }

                }

                
            return max_flow;
            }

            int main(){
                
            int i,a,b,u,v,cost;
                
            while(scanf("%d %d %d %d",&m,&a,&b,&n)!=EOF){
                    getchar();
                    memset(map,
            0,sizeof(map));
                    
            for(i=0;i<n;i++){
                        
            while(getchar()!='(');
                        scanf(
            "%d,%d)%d",&u,&v,&cost);
                        map[u
            +1][v+1]=cost;
                    }

                    
            for(start=m+1,i=0;i<a;i++){
                        
            while(getchar()!='(');
                        scanf(
            "%d)%d",&u,&cost);
                        map[start][u
            +1]=cost;
                    }

                    
            for(end=m+2,i=0;i<b;i++){
                        
            while(getchar()!='(');
                        scanf(
            "%d)%d",&v,&cost);
                        map[v
            +1][end]=cost;
                    }

                    m
            =m+2;
                    printf(
            "%d\n",Edmonds_Karp());
                }

                
            return 0;
            }

            posted on 2009-05-23 09:54 極限定律 閱讀(730) 評論(0)  編輯 收藏 引用 所屬分類: ACM/ICPC

            <2009年7月>
            2829301234
            567891011
            12131415161718
            19202122232425
            2627282930311
            2345678

            導航

            統計

            常用鏈接

            留言簿(10)

            隨筆分類

            隨筆檔案

            友情鏈接

            搜索

            最新評論

            閱讀排行榜

            評論排行榜

            久久国产精品免费一区二区三区| 国产精品久久久99| 亚洲AV日韩精品久久久久久| 热re99久久精品国99热| 精品国产一区二区三区久久| 精品人妻伦九区久久AAA片69| 久久精品视频一| 国产精品美女久久久| 少妇久久久久久被弄到高潮 | 偷窥少妇久久久久久久久| 亚洲国产精品高清久久久| 久久国产精品99久久久久久老狼| 亚洲日本va午夜中文字幕久久| 亚洲精品乱码久久久久久自慰| 精品久久久久久无码免费| 日本久久久久亚洲中字幕| 欧洲国产伦久久久久久久| 国产91久久精品一区二区| 国产精品久久久久久久人人看| 91精品国产91久久久久久蜜臀 | 国产精品久久久久久久久免费| 天天综合久久一二三区| 国产精品久久网| 久久精品欧美日韩精品| 奇米影视7777久久精品人人爽| 91精品免费久久久久久久久| 国产精品一区二区久久国产| 久久人人爽人人爽人人片AV麻烦| 久久久久亚洲AV综合波多野结衣| 777久久精品一区二区三区无码| 亚洲伊人久久大香线蕉综合图片 | 亚洲精品午夜国产va久久| 久久精品18| 理论片午午伦夜理片久久 | 久久久久亚洲精品无码蜜桃| 97久久婷婷五月综合色d啪蜜芽 | 99久久久精品| 97精品国产97久久久久久免费| 久久线看观看精品香蕉国产| 亚洲欧美日韩精品久久| 国产精品久久久久一区二区三区|