• <ins id="pjuwb"></ins>
    <blockquote id="pjuwb"><pre id="pjuwb"></pre></blockquote>
    <noscript id="pjuwb"></noscript>
          <sup id="pjuwb"><pre id="pjuwb"></pre></sup>
            <dd id="pjuwb"></dd>
            <abbr id="pjuwb"></abbr>

            POJ 1459 Power Network 最大網絡流

            Description

            A power network consists of nodes (power stations, consumers and dispatchers) connected by power transport lines. A node u may be supplied with an amount s(u) >= 0 of power, may produce an amount 0 <= p(u) <= pmax(u) of power, may consume an amount 0 <= c(u) <= min(s(u),cmax(u)) of power, and may deliver an amount d(u)=s(u)+p(u)-c(u) of power. The following restrictions apply: c(u)=0 for any power station, p(u)=0 for any consumer, and p(u)=c(u)=0 for any dispatcher. There is at most one power transport line (u,v) from a node u to a node v in the net; it transports an amount 0 <= l(u,v) <= lmax(u,v) of power delivered by u to v. Let Con=Σuc(u) be the power consumed in the net. The problem is to compute the maximum value of Con.

            An example is in figure 1. The label x/y of power station u shows that p(u)=x and pmax(u)=y. The label x/y of consumer u shows that c(u)=x and cmax(u)=y. The label x/y of power transport line (u,v) shows that l(u,v)=x and lmax(u,v)=y. The power consumed is Con=6. Notice that there are other possible states of the network but the value of Con cannot exceed 6.

            Input

            There are several data sets in the input. Each data set encodes a power network. It starts with four integers: 0 <= n <= 100 (nodes), 0 <= np <= n (power stations), 0 <= nc <= n (consumers), and 0 <= m <= n^2 (power transport lines). Follow m data triplets (u,v)z, where u and v are node identifiers (starting from 0) and 0 <= z <= 1000 is the value of lmax(u,v). Follow np doublets (u)z, where u is the identifier of a power station and 0 <= z <= 10000 is the value of pmax(u). The data set ends with nc doublets (u)z, where u is the identifier of a consumer and 0 <= z <= 10000 is the value of cmax(u). All input numbers are integers. Except the (u,v)z triplets and the (u)z doublets, which do not contain white spaces, white spaces can occur freely in input. Input data terminate with an end of file and are correct.

            Output

            For each data set from the input, the program prints on the standard output the maximum amount of power that can be consumed in the corresponding network. Each result has an integral value and is printed from the beginning of a separate line.

            Sample Input

            2 1 1 2 (0,1)20 (1,0)10 (0)15 (1)20
            7 2 3 13 (0,0)1 (0,1)2 (0,2)5 (1,0)1 (1,2)8 (2,3)1 (2,4)7
            (3,5)2 (3,6)5 (4,2)7 (4,3)5 (4,5)1 (6,0)5
            (0)5 (1)2 (3)2 (4)1 (5)4

            Sample Output

            15
            6

            Hint

            The sample input contains two data sets. The first data set encodes a network with 2 nodes, power station 0 with pmax(0)=15 and consumer 1 with cmax(1)=20, and 2 power transport lines with lmax(0,1)=20 and lmax(1,0)=10. The maximum value of Con is 15. The second data set encodes the network from figure 1.
               
                輸入分別為m個點,a個發電站,b個用戶,n條邊;接下去是n條邊的信息(u,v)cost,cost表示邊(u,v)的最大流量;a個發電站的信息(u)cost,cost表示發電站u能提供的最大流量;b個用戶的信息(v)cost,cost表示每個用戶v能接受的最大流量。
                典型的最大網絡流中多源多匯的問題,在圖中添加1個源點S和匯點T,將S和每個發電站相連,邊的權值是發電站能提供的最大流量;將每個用戶和T相連,邊的權值是每個用戶能接受的最大流量。從而轉化成了一般的最大網絡流問題,然后求解。
            #include <iostream>
            #include 
            <queue>
            using namespace std;

            const int MAXN = 110;
            const int INF = 0x7FFFFFFF;
            int n,m,start,end;
            int path[MAXN],flow[MAXN],map[MAXN][MAXN];
            queue
            <int> q;

            int bfs(){
                
            int i,t;
                
            while(!q.empty()) q.pop();
                memset(path,
            -1,sizeof(path));
                path[start]
            =0,flow[start]=INF;
                q.push(start);
                
            while(!q.empty()){
                    t
            =q.front();
                    q.pop();
                    
            if(t==end) break;
                    
            for(i=1;i<=m;i++){
                        
            if(i!=start && path[i]==-1 && map[t][i]){
                            flow[i]
            =flow[t]<map[t][i]?flow[t]:map[t][i];
                            q.push(i);
                            path[i]
            =t;
                        }

                    }

                }

                
            if(path[end]==-1return -1;
                
            return flow[end];                   
            }

            int Edmonds_Karp(){
                
            int max_flow=0,step,now,pre;
                
            while((step=bfs())!=-1){
                    max_flow
            +=step;
                    now
            =end;
                    
            while(now!=start){
                        pre
            =path[now];
                        map[pre][now]
            -=step;
                        map[now][pre]
            +=step;
                        now
            =pre;
                    }

                }

                
            return max_flow;
            }

            int main(){
                
            int i,a,b,u,v,cost;
                
            while(scanf("%d %d %d %d",&m,&a,&b,&n)!=EOF){
                    getchar();
                    memset(map,
            0,sizeof(map));
                    
            for(i=0;i<n;i++){
                        
            while(getchar()!='(');
                        scanf(
            "%d,%d)%d",&u,&v,&cost);
                        map[u
            +1][v+1]=cost;
                    }

                    
            for(start=m+1,i=0;i<a;i++){
                        
            while(getchar()!='(');
                        scanf(
            "%d)%d",&u,&cost);
                        map[start][u
            +1]=cost;
                    }

                    
            for(end=m+2,i=0;i<b;i++){
                        
            while(getchar()!='(');
                        scanf(
            "%d)%d",&v,&cost);
                        map[v
            +1][end]=cost;
                    }

                    m
            =m+2;
                    printf(
            "%d\n",Edmonds_Karp());
                }

                
            return 0;
            }

            posted on 2009-05-23 09:54 極限定律 閱讀(729) 評論(0)  編輯 收藏 引用 所屬分類: ACM/ICPC

            <2009年6月>
            31123456
            78910111213
            14151617181920
            21222324252627
            2829301234
            567891011

            導航

            統計

            常用鏈接

            留言簿(10)

            隨筆分類

            隨筆檔案

            友情鏈接

            搜索

            最新評論

            閱讀排行榜

            評論排行榜

            久久国产精品久久| 777米奇久久最新地址| 国产L精品国产亚洲区久久| 久久久中文字幕日本| 日本人妻丰满熟妇久久久久久| 久久精品国产99国产精品澳门| 精品久久久久久99人妻| 国内精品伊人久久久久av一坑| 欧美性猛交xxxx免费看久久久| 久久最新精品国产| 久久精品水蜜桃av综合天堂| 国产精品中文久久久久久久 | 久久99热这里只有精品国产| 超级碰碰碰碰97久久久久| 曰曰摸天天摸人人看久久久| 久久99精品国产| 亚洲精品蜜桃久久久久久| 伊人久久精品无码二区麻豆| 亚洲午夜无码久久久久小说| 久久久久久亚洲精品无码| 久久精品亚洲精品国产欧美| 久久ww精品w免费人成| 99久久香蕉国产线看观香| 久久青青草原精品国产软件| 久久精品国产91久久综合麻豆自制| 久久人人添人人爽添人人片牛牛| 亚洲欧美一级久久精品| 久久久久国产| 少妇久久久久久被弄到高潮| 蜜桃麻豆www久久国产精品| 久久av高潮av无码av喷吹| 国产精品九九久久精品女同亚洲欧美日韩综合区 | 久久亚洲AV无码精品色午夜| 婷婷国产天堂久久综合五月| 97精品依人久久久大香线蕉97| 亚洲精品无码久久不卡| 18禁黄久久久AAA片| 狠狠色丁香久久婷婷综合| 色欲综合久久中文字幕网| 久久精品国产清高在天天线| 精品一区二区久久|