• <ins id="pjuwb"></ins>
    <blockquote id="pjuwb"><pre id="pjuwb"></pre></blockquote>
    <noscript id="pjuwb"></noscript>
          <sup id="pjuwb"><pre id="pjuwb"></pre></sup>
            <dd id="pjuwb"></dd>
            <abbr id="pjuwb"></abbr>

            POJ 1459 Power Network 最大網絡流

            Description

            A power network consists of nodes (power stations, consumers and dispatchers) connected by power transport lines. A node u may be supplied with an amount s(u) >= 0 of power, may produce an amount 0 <= p(u) <= pmax(u) of power, may consume an amount 0 <= c(u) <= min(s(u),cmax(u)) of power, and may deliver an amount d(u)=s(u)+p(u)-c(u) of power. The following restrictions apply: c(u)=0 for any power station, p(u)=0 for any consumer, and p(u)=c(u)=0 for any dispatcher. There is at most one power transport line (u,v) from a node u to a node v in the net; it transports an amount 0 <= l(u,v) <= lmax(u,v) of power delivered by u to v. Let Con=Σuc(u) be the power consumed in the net. The problem is to compute the maximum value of Con.

            An example is in figure 1. The label x/y of power station u shows that p(u)=x and pmax(u)=y. The label x/y of consumer u shows that c(u)=x and cmax(u)=y. The label x/y of power transport line (u,v) shows that l(u,v)=x and lmax(u,v)=y. The power consumed is Con=6. Notice that there are other possible states of the network but the value of Con cannot exceed 6.

            Input

            There are several data sets in the input. Each data set encodes a power network. It starts with four integers: 0 <= n <= 100 (nodes), 0 <= np <= n (power stations), 0 <= nc <= n (consumers), and 0 <= m <= n^2 (power transport lines). Follow m data triplets (u,v)z, where u and v are node identifiers (starting from 0) and 0 <= z <= 1000 is the value of lmax(u,v). Follow np doublets (u)z, where u is the identifier of a power station and 0 <= z <= 10000 is the value of pmax(u). The data set ends with nc doublets (u)z, where u is the identifier of a consumer and 0 <= z <= 10000 is the value of cmax(u). All input numbers are integers. Except the (u,v)z triplets and the (u)z doublets, which do not contain white spaces, white spaces can occur freely in input. Input data terminate with an end of file and are correct.

            Output

            For each data set from the input, the program prints on the standard output the maximum amount of power that can be consumed in the corresponding network. Each result has an integral value and is printed from the beginning of a separate line.

            Sample Input

            2 1 1 2 (0,1)20 (1,0)10 (0)15 (1)20
            7 2 3 13 (0,0)1 (0,1)2 (0,2)5 (1,0)1 (1,2)8 (2,3)1 (2,4)7
            (3,5)2 (3,6)5 (4,2)7 (4,3)5 (4,5)1 (6,0)5
            (0)5 (1)2 (3)2 (4)1 (5)4

            Sample Output

            15
            6

            Hint

            The sample input contains two data sets. The first data set encodes a network with 2 nodes, power station 0 with pmax(0)=15 and consumer 1 with cmax(1)=20, and 2 power transport lines with lmax(0,1)=20 and lmax(1,0)=10. The maximum value of Con is 15. The second data set encodes the network from figure 1.
               
                輸入分別為m個點,a個發電站,b個用戶,n條邊;接下去是n條邊的信息(u,v)cost,cost表示邊(u,v)的最大流量;a個發電站的信息(u)cost,cost表示發電站u能提供的最大流量;b個用戶的信息(v)cost,cost表示每個用戶v能接受的最大流量。
                典型的最大網絡流中多源多匯的問題,在圖中添加1個源點S和匯點T,將S和每個發電站相連,邊的權值是發電站能提供的最大流量;將每個用戶和T相連,邊的權值是每個用戶能接受的最大流量。從而轉化成了一般的最大網絡流問題,然后求解。
            #include <iostream>
            #include 
            <queue>
            using namespace std;

            const int MAXN = 110;
            const int INF = 0x7FFFFFFF;
            int n,m,start,end;
            int path[MAXN],flow[MAXN],map[MAXN][MAXN];
            queue
            <int> q;

            int bfs(){
                
            int i,t;
                
            while(!q.empty()) q.pop();
                memset(path,
            -1,sizeof(path));
                path[start]
            =0,flow[start]=INF;
                q.push(start);
                
            while(!q.empty()){
                    t
            =q.front();
                    q.pop();
                    
            if(t==end) break;
                    
            for(i=1;i<=m;i++){
                        
            if(i!=start && path[i]==-1 && map[t][i]){
                            flow[i]
            =flow[t]<map[t][i]?flow[t]:map[t][i];
                            q.push(i);
                            path[i]
            =t;
                        }

                    }

                }

                
            if(path[end]==-1return -1;
                
            return flow[end];                   
            }

            int Edmonds_Karp(){
                
            int max_flow=0,step,now,pre;
                
            while((step=bfs())!=-1){
                    max_flow
            +=step;
                    now
            =end;
                    
            while(now!=start){
                        pre
            =path[now];
                        map[pre][now]
            -=step;
                        map[now][pre]
            +=step;
                        now
            =pre;
                    }

                }

                
            return max_flow;
            }

            int main(){
                
            int i,a,b,u,v,cost;
                
            while(scanf("%d %d %d %d",&m,&a,&b,&n)!=EOF){
                    getchar();
                    memset(map,
            0,sizeof(map));
                    
            for(i=0;i<n;i++){
                        
            while(getchar()!='(');
                        scanf(
            "%d,%d)%d",&u,&v,&cost);
                        map[u
            +1][v+1]=cost;
                    }

                    
            for(start=m+1,i=0;i<a;i++){
                        
            while(getchar()!='(');
                        scanf(
            "%d)%d",&u,&cost);
                        map[start][u
            +1]=cost;
                    }

                    
            for(end=m+2,i=0;i<b;i++){
                        
            while(getchar()!='(');
                        scanf(
            "%d)%d",&v,&cost);
                        map[v
            +1][end]=cost;
                    }

                    m
            =m+2;
                    printf(
            "%d\n",Edmonds_Karp());
                }

                
            return 0;
            }

            posted on 2009-05-23 09:54 極限定律 閱讀(725) 評論(0)  編輯 收藏 引用 所屬分類: ACM/ICPC

            <2009年5月>
            262728293012
            3456789
            10111213141516
            17181920212223
            24252627282930
            31123456

            導航

            統計

            常用鏈接

            留言簿(10)

            隨筆分類

            隨筆檔案

            友情鏈接

            搜索

            最新評論

            閱讀排行榜

            評論排行榜

            国产精品久久波多野结衣| 色狠狠久久综合网| 国产一区二区三区久久精品| 99久久99久久精品国产| 久久精品视频91| 亚洲午夜久久久久久久久久| 久久狠狠高潮亚洲精品| 久久国产热这里只有精品| 久久夜色精品国产噜噜亚洲AV| 久久久91精品国产一区二区三区| 亚洲国产高清精品线久久 | 国产亚洲色婷婷久久99精品91| 性做久久久久久久久久久| 久久人爽人人爽人人片AV| 亚洲精品国产第一综合99久久| 狠狠色婷婷久久一区二区三区| 久久久久久无码国产精品中文字幕| 久久久久免费看成人影片| 亚洲另类欧美综合久久图片区| 久久91精品国产91久久小草| AV无码久久久久不卡蜜桃| 午夜肉伦伦影院久久精品免费看国产一区二区三区 | 91秦先生久久久久久久| 无码日韩人妻精品久久蜜桃| 免费一级做a爰片久久毛片潮 | 伊人久久精品无码av一区| 久久精品中文字幕有码| 日韩精品国产自在久久现线拍| 久久综合亚洲欧美成人| 国产精品美女久久福利网站| 色婷婷狠狠久久综合五月| 热久久国产欧美一区二区精品| 99久久国产综合精品网成人影院 | 久久夜色精品国产欧美乱| 中文字幕久久波多野结衣av| 国产69精品久久久久久人妻精品| 亚洲欧美国产日韩综合久久| 伊人情人综合成人久久网小说| 99久久香蕉国产线看观香| 久久久久亚洲AV成人网人人网站| 久久国产亚洲精品|