• <ins id="pjuwb"></ins>
    <blockquote id="pjuwb"><pre id="pjuwb"></pre></blockquote>
    <noscript id="pjuwb"></noscript>
          <sup id="pjuwb"><pre id="pjuwb"></pre></sup>
            <dd id="pjuwb"></dd>
            <abbr id="pjuwb"></abbr>

            ZOJ 1276 Optimal Array Multiplication Sequence 經典DP問題

            Given two arrays A and B, we can determine the array C = A B using the standard definition of matrix multiplication:

             

            The number of columns in the A array must be the same as the number of rows in the B array. Notationally, let's say that rows(A) and columns(A) are the number of rows and columns, respectively, in the A array. The number of individual multiplications required to compute the entire C array (which will have the same number of rows as A and the same number of columns as B) is then rows(A) columns(B) columns(A). For example, if A is a 10 x 20 array, and B is a 20 x 15 array, it will take 10 x 15 x 20, or 3000 multiplications to compute the C array.


            To perform multiplication of more than two arrays we have a choice of how to proceed. For example, if X, Y, and Z are arrays, then to compute X Y Z we could either compute (X Y) Z or X (Y Z). Suppose X is a 5 x 10 array, Y is a 10 x 20 array, and Z is a 20 x 35 array. Let's look at the number of multiplications required to compute the product using the two different sequences:

             

            (X Y) Z


            5 x 20 x 10 = 1000 multiplications to determine the product (X Y), a 5 x 20 array.

            Then 5 x 35 x 20 = 3500 multiplications to determine the final result.

            Total multiplications: 4500.

            X (Y Z)

            10 x 35 x 20 = 7000 multiplications to determine the product (Y Z), a 10 x 35 array.

            Then 5 x 35 x 10 = 1750 multiplications to determine the final result.

            Total multiplications: 8750.

            Clearly we'll be able to compute (X Y) Z using fewer individual multiplications.

            Given the size of each array in a sequence of arrays to be multiplied, you are to determine an optimal computational sequence. Optimality, for this problem, is relative to the number of individual multiplcations required.


            Input

            For each array in the multiple sequences of arrays to be multiplied you will be given only the dimensions of the array. Each sequence will consist of an integer N which indicates the number of arrays to be multiplied, and then N pairs of integers, each pair giving the number of rows and columns in an array; the order in which the dimensions are given is the same as the order in which the arrays are to be multiplied. A value of zero for N indicates the end of the input. N will be no larger than 10.


            Output

            Assume the arrays are named A1, A2, ..., AN. Your output for each input case is to be a line containing a parenthesized expression clearly indicating the order in which the arrays are to be multiplied. Prefix the output for each case with the case number (they are sequentially numbered, starting with 1). Your output should strongly resemble that shown in the samples shown below. If, by chance, there are multiple correct sequences, any of these will be accepted as a valid answer.


            Sample Input

            3
            1 5
            5 20
            20 1
            3
            5 10
            10 20
            20 35
            6
            30 35
            35 15
            15 5
            5 10
            10 20
            20 25
            0


            Sample Output

            Case 1: (A1 x (A2 x A3))
            Case 2: ((A1 x A2) x A3)
            Case 3: ((A1 x (A2 x A3)) x ((A4 x A5) x A6))


            Source: North Central North America 1996
                

                設計算矩陣A[i:j],1<=i<=j<=n,所需要的最少乘法次數為m[i,j],則原問題的最優值為m[1,n]。
                當i=j時,A[i:j]=Ai,m[i,i]=0,i=1,2,...,n;
                當i<j時,m[i,j]=m[i,k]+m[k+1][j]+pi-1*pk*pj,i<=k<j。
            #include<iostream>
            using namespace std;

            void MatrixChain(int n,int p[],int m[][11],int s[][11]){
                
            int i,j,k,r,t;
                
            for(i=1;i<=n;i++) m[i][i]=0;
                
            for(r=2;r<=n;r++)
                    
            for(i=1;i<=n-r+1;i++){
                        j
            =i+r-1;
                        m[i][j]
            =m[i+1][j]+p[i-1]*p[i]*p[j];
                        s[i][j]
            =i;
                        
            for(k=i+1;k<j;k++){
                            t
            =m[i][k]+m[k+1][j]+p[i-1]*p[k]*p[j];
                            
            if(t<m[i][j]){
                                m[i][j]
            =t;
                                s[i][j]
            =k;
                            }

                        }

                    }

            }

            void output(int i,int j,int s[][11]){
                
            if(i==j)
                    printf(
            "A%d",i);
                
            else{
                    printf(
            "(");
                    output(i,s[i][j],s);
                    printf(
            " x ");
                    output(s[i][j]
            +1,j,s);
                    printf(
            ")");
                }

            }

            int main(){
                
            int i,n,ca=1,p[11],m[11][11],s[11][11];
                
            while(scanf("%d",&n),n){
                    
            for(i=1;i<=n;i++) scanf("%d %d",&p[i-1],&p[i]);
                    MatrixChain(n,p,m,s);
                    printf(
            "Case %d: ",ca++);
                    output(
            1,n,s);
                    printf(
            "\n");
                }

                
            return 0;
            }

            posted on 2009-06-19 09:27 極限定律 閱讀(1201) 評論(0)  編輯 收藏 引用 所屬分類: ACM/ICPC

            <2009年6月>
            31123456
            78910111213
            14151617181920
            21222324252627
            2829301234
            567891011

            導航

            統計

            常用鏈接

            留言簿(10)

            隨筆分類

            隨筆檔案

            友情鏈接

            搜索

            最新評論

            閱讀排行榜

            評論排行榜

            人妻无码久久一区二区三区免费| 97久久超碰国产精品2021| 久久97久久97精品免视看| 国产精品成人久久久久久久| 久久精品无码一区二区日韩AV| 久久综合伊人77777| 久久精品免费一区二区| 久久青青草原亚洲av无码app| 久久综合中文字幕| 中文字幕久久久久人妻| 精品久久一区二区三区| 青青久久精品国产免费看| 久久精品国产亚洲av水果派 | 久久精品成人国产午夜| 精品免费久久久久国产一区| 99久久99久久精品国产片果冻| 蜜桃麻豆www久久| 中文无码久久精品| 国产巨作麻豆欧美亚洲综合久久| 精品国产乱码久久久久久人妻| 久久综合丁香激情久久| 狠狠综合久久综合88亚洲| 国产香蕉97碰碰久久人人| 久久免费的精品国产V∧| 亚洲国产成人久久综合碰| 91精品国产91久久| 无码人妻久久一区二区三区免费丨| 久久精品国产色蜜蜜麻豆| 婷婷综合久久中文字幕| 久久99亚洲网美利坚合众国| 久久人人爽人人爽人人片AV高清| 久久久久国色AV免费观看| 国产成人精品久久亚洲高清不卡| 久久久久久久久久久久中文字幕 | 思思久久99热只有频精品66| 国产成人精品久久亚洲| 99久久精品久久久久久清纯| 国内精品久久国产大陆| 久久最新精品国产| 精品国产乱码久久久久久浪潮 | 国内精品伊人久久久久影院对白 |