• <ins id="pjuwb"></ins>
    <blockquote id="pjuwb"><pre id="pjuwb"></pre></blockquote>
    <noscript id="pjuwb"></noscript>
          <sup id="pjuwb"><pre id="pjuwb"></pre></sup>
            <dd id="pjuwb"></dd>
            <abbr id="pjuwb"></abbr>

            ZOJ 1276 Optimal Array Multiplication Sequence 經典DP問題

            Given two arrays A and B, we can determine the array C = A B using the standard definition of matrix multiplication:

             

            The number of columns in the A array must be the same as the number of rows in the B array. Notationally, let's say that rows(A) and columns(A) are the number of rows and columns, respectively, in the A array. The number of individual multiplications required to compute the entire C array (which will have the same number of rows as A and the same number of columns as B) is then rows(A) columns(B) columns(A). For example, if A is a 10 x 20 array, and B is a 20 x 15 array, it will take 10 x 15 x 20, or 3000 multiplications to compute the C array.


            To perform multiplication of more than two arrays we have a choice of how to proceed. For example, if X, Y, and Z are arrays, then to compute X Y Z we could either compute (X Y) Z or X (Y Z). Suppose X is a 5 x 10 array, Y is a 10 x 20 array, and Z is a 20 x 35 array. Let's look at the number of multiplications required to compute the product using the two different sequences:

             

            (X Y) Z


            5 x 20 x 10 = 1000 multiplications to determine the product (X Y), a 5 x 20 array.

            Then 5 x 35 x 20 = 3500 multiplications to determine the final result.

            Total multiplications: 4500.

            X (Y Z)

            10 x 35 x 20 = 7000 multiplications to determine the product (Y Z), a 10 x 35 array.

            Then 5 x 35 x 10 = 1750 multiplications to determine the final result.

            Total multiplications: 8750.

            Clearly we'll be able to compute (X Y) Z using fewer individual multiplications.

            Given the size of each array in a sequence of arrays to be multiplied, you are to determine an optimal computational sequence. Optimality, for this problem, is relative to the number of individual multiplcations required.


            Input

            For each array in the multiple sequences of arrays to be multiplied you will be given only the dimensions of the array. Each sequence will consist of an integer N which indicates the number of arrays to be multiplied, and then N pairs of integers, each pair giving the number of rows and columns in an array; the order in which the dimensions are given is the same as the order in which the arrays are to be multiplied. A value of zero for N indicates the end of the input. N will be no larger than 10.


            Output

            Assume the arrays are named A1, A2, ..., AN. Your output for each input case is to be a line containing a parenthesized expression clearly indicating the order in which the arrays are to be multiplied. Prefix the output for each case with the case number (they are sequentially numbered, starting with 1). Your output should strongly resemble that shown in the samples shown below. If, by chance, there are multiple correct sequences, any of these will be accepted as a valid answer.


            Sample Input

            3
            1 5
            5 20
            20 1
            3
            5 10
            10 20
            20 35
            6
            30 35
            35 15
            15 5
            5 10
            10 20
            20 25
            0


            Sample Output

            Case 1: (A1 x (A2 x A3))
            Case 2: ((A1 x A2) x A3)
            Case 3: ((A1 x (A2 x A3)) x ((A4 x A5) x A6))


            Source: North Central North America 1996
                

                設計算矩陣A[i:j],1<=i<=j<=n,所需要的最少乘法次數為m[i,j],則原問題的最優值為m[1,n]。
                當i=j時,A[i:j]=Ai,m[i,i]=0,i=1,2,...,n;
                當i<j時,m[i,j]=m[i,k]+m[k+1][j]+pi-1*pk*pj,i<=k<j。
            #include<iostream>
            using namespace std;

            void MatrixChain(int n,int p[],int m[][11],int s[][11]){
                
            int i,j,k,r,t;
                
            for(i=1;i<=n;i++) m[i][i]=0;
                
            for(r=2;r<=n;r++)
                    
            for(i=1;i<=n-r+1;i++){
                        j
            =i+r-1;
                        m[i][j]
            =m[i+1][j]+p[i-1]*p[i]*p[j];
                        s[i][j]
            =i;
                        
            for(k=i+1;k<j;k++){
                            t
            =m[i][k]+m[k+1][j]+p[i-1]*p[k]*p[j];
                            
            if(t<m[i][j]){
                                m[i][j]
            =t;
                                s[i][j]
            =k;
                            }

                        }

                    }

            }

            void output(int i,int j,int s[][11]){
                
            if(i==j)
                    printf(
            "A%d",i);
                
            else{
                    printf(
            "(");
                    output(i,s[i][j],s);
                    printf(
            " x ");
                    output(s[i][j]
            +1,j,s);
                    printf(
            ")");
                }

            }

            int main(){
                
            int i,n,ca=1,p[11],m[11][11],s[11][11];
                
            while(scanf("%d",&n),n){
                    
            for(i=1;i<=n;i++) scanf("%d %d",&p[i-1],&p[i]);
                    MatrixChain(n,p,m,s);
                    printf(
            "Case %d: ",ca++);
                    output(
            1,n,s);
                    printf(
            "\n");
                }

                
            return 0;
            }

            posted on 2009-06-19 09:27 極限定律 閱讀(1203) 評論(0)  編輯 收藏 引用 所屬分類: ACM/ICPC

            <2009年6月>
            31123456
            78910111213
            14151617181920
            21222324252627
            2829301234
            567891011

            導航

            統計

            常用鏈接

            留言簿(10)

            隨筆分類

            隨筆檔案

            友情鏈接

            搜索

            最新評論

            閱讀排行榜

            評論排行榜

            91精品国产乱码久久久久久| 亚洲一级Av无码毛片久久精品| 精品久久久久久久久午夜福利| 久久精品嫩草影院| 精品久久久无码中文字幕天天| 97视频久久久| 四虎国产精品免费久久久| 久久久这里只有精品加勒比| 国产精品免费福利久久| 国内精品久久久久影院老司| 2021久久国自产拍精品| 久久91精品国产91| 久久精品?ⅴ无码中文字幕| 97久久天天综合色天天综合色hd| 亚洲日韩欧美一区久久久久我| 久久精品国产半推半就| 亚洲精品tv久久久久久久久 | 久久久久亚洲av综合波多野结衣| 精品一区二区久久久久久久网站| 伊人久久大香线蕉成人| 久久本道久久综合伊人| 国产成人精品免费久久久久| 婷婷久久香蕉五月综合加勒比| 亚洲va久久久久| 综合久久精品色| 性欧美大战久久久久久久| 国产精品伊人久久伊人电影 | 国产高清美女一级a毛片久久w| 久久香蕉超碰97国产精品| 狠狠色噜噜色狠狠狠综合久久| 欧美日韩精品久久久免费观看| 国产69精品久久久久99| 久久综合久久综合九色| 国产精品久久久久天天影视| 久久精品这里热有精品| 婷婷综合久久狠狠色99h| 久久99国产精品一区二区| 久久99精品国产| 精品国产综合区久久久久久| segui久久国产精品| 久久伊人色|