• <ins id="pjuwb"></ins>
    <blockquote id="pjuwb"><pre id="pjuwb"></pre></blockquote>
    <noscript id="pjuwb"></noscript>
          <sup id="pjuwb"><pre id="pjuwb"></pre></sup>
            <dd id="pjuwb"></dd>
            <abbr id="pjuwb"></abbr>

            ZOJ 1276 Optimal Array Multiplication Sequence 經典DP問題

            Given two arrays A and B, we can determine the array C = A B using the standard definition of matrix multiplication:

             

            The number of columns in the A array must be the same as the number of rows in the B array. Notationally, let's say that rows(A) and columns(A) are the number of rows and columns, respectively, in the A array. The number of individual multiplications required to compute the entire C array (which will have the same number of rows as A and the same number of columns as B) is then rows(A) columns(B) columns(A). For example, if A is a 10 x 20 array, and B is a 20 x 15 array, it will take 10 x 15 x 20, or 3000 multiplications to compute the C array.


            To perform multiplication of more than two arrays we have a choice of how to proceed. For example, if X, Y, and Z are arrays, then to compute X Y Z we could either compute (X Y) Z or X (Y Z). Suppose X is a 5 x 10 array, Y is a 10 x 20 array, and Z is a 20 x 35 array. Let's look at the number of multiplications required to compute the product using the two different sequences:

             

            (X Y) Z


            5 x 20 x 10 = 1000 multiplications to determine the product (X Y), a 5 x 20 array.

            Then 5 x 35 x 20 = 3500 multiplications to determine the final result.

            Total multiplications: 4500.

            X (Y Z)

            10 x 35 x 20 = 7000 multiplications to determine the product (Y Z), a 10 x 35 array.

            Then 5 x 35 x 10 = 1750 multiplications to determine the final result.

            Total multiplications: 8750.

            Clearly we'll be able to compute (X Y) Z using fewer individual multiplications.

            Given the size of each array in a sequence of arrays to be multiplied, you are to determine an optimal computational sequence. Optimality, for this problem, is relative to the number of individual multiplcations required.


            Input

            For each array in the multiple sequences of arrays to be multiplied you will be given only the dimensions of the array. Each sequence will consist of an integer N which indicates the number of arrays to be multiplied, and then N pairs of integers, each pair giving the number of rows and columns in an array; the order in which the dimensions are given is the same as the order in which the arrays are to be multiplied. A value of zero for N indicates the end of the input. N will be no larger than 10.


            Output

            Assume the arrays are named A1, A2, ..., AN. Your output for each input case is to be a line containing a parenthesized expression clearly indicating the order in which the arrays are to be multiplied. Prefix the output for each case with the case number (they are sequentially numbered, starting with 1). Your output should strongly resemble that shown in the samples shown below. If, by chance, there are multiple correct sequences, any of these will be accepted as a valid answer.


            Sample Input

            3
            1 5
            5 20
            20 1
            3
            5 10
            10 20
            20 35
            6
            30 35
            35 15
            15 5
            5 10
            10 20
            20 25
            0


            Sample Output

            Case 1: (A1 x (A2 x A3))
            Case 2: ((A1 x A2) x A3)
            Case 3: ((A1 x (A2 x A3)) x ((A4 x A5) x A6))


            Source: North Central North America 1996
                

                設計算矩陣A[i:j],1<=i<=j<=n,所需要的最少乘法次數為m[i,j],則原問題的最優值為m[1,n]。
                當i=j時,A[i:j]=Ai,m[i,i]=0,i=1,2,...,n;
                當i<j時,m[i,j]=m[i,k]+m[k+1][j]+pi-1*pk*pj,i<=k<j。
            #include<iostream>
            using namespace std;

            void MatrixChain(int n,int p[],int m[][11],int s[][11]){
                
            int i,j,k,r,t;
                
            for(i=1;i<=n;i++) m[i][i]=0;
                
            for(r=2;r<=n;r++)
                    
            for(i=1;i<=n-r+1;i++){
                        j
            =i+r-1;
                        m[i][j]
            =m[i+1][j]+p[i-1]*p[i]*p[j];
                        s[i][j]
            =i;
                        
            for(k=i+1;k<j;k++){
                            t
            =m[i][k]+m[k+1][j]+p[i-1]*p[k]*p[j];
                            
            if(t<m[i][j]){
                                m[i][j]
            =t;
                                s[i][j]
            =k;
                            }

                        }

                    }

            }

            void output(int i,int j,int s[][11]){
                
            if(i==j)
                    printf(
            "A%d",i);
                
            else{
                    printf(
            "(");
                    output(i,s[i][j],s);
                    printf(
            " x ");
                    output(s[i][j]
            +1,j,s);
                    printf(
            ")");
                }

            }

            int main(){
                
            int i,n,ca=1,p[11],m[11][11],s[11][11];
                
            while(scanf("%d",&n),n){
                    
            for(i=1;i<=n;i++) scanf("%d %d",&p[i-1],&p[i]);
                    MatrixChain(n,p,m,s);
                    printf(
            "Case %d: ",ca++);
                    output(
            1,n,s);
                    printf(
            "\n");
                }

                
            return 0;
            }

            posted on 2009-06-19 09:27 極限定律 閱讀(1203) 評論(0)  編輯 收藏 引用 所屬分類: ACM/ICPC

            <2009年6月>
            31123456
            78910111213
            14151617181920
            21222324252627
            2829301234
            567891011

            導航

            統計

            常用鏈接

            留言簿(10)

            隨筆分類

            隨筆檔案

            友情鏈接

            搜索

            最新評論

            閱讀排行榜

            評論排行榜

            亚洲国产视频久久| 国内精品九九久久久精品| 伊人久久大香线蕉影院95| 精品久久久久久综合日本| 老司机午夜网站国内精品久久久久久久久| 日韩一区二区久久久久久| 久久精品综合网| 精品久久久久久成人AV| 久久久精品国产亚洲成人满18免费网站 | 久久精品国产色蜜蜜麻豆 | 日本WV一本一道久久香蕉| 狠狠色丁香久久综合婷婷| 国产精品日韩深夜福利久久 | 色偷偷久久一区二区三区| 国产精品无码久久四虎| 99久久综合国产精品免费| 久久国产精品99精品国产987| 麻豆久久久9性大片| 久久免费美女视频| 精品久久无码中文字幕| 久久久久久午夜精品| 精品综合久久久久久88小说| 91久久婷婷国产综合精品青草| 久久妇女高潮几次MBA| 亚洲va久久久久| 久久www免费人成看国产片| 久久被窝电影亚洲爽爽爽| 亚洲AV日韩AV天堂久久| 久久久久久人妻无码| 亚洲国产精品无码久久| 久久一区二区三区99| 久久99精品久久久久久9蜜桃| 久久99精品国产| 日本福利片国产午夜久久| 国内精品久久人妻互换| 激情伊人五月天久久综合| 久久天天躁狠狠躁夜夜网站| 无码人妻久久一区二区三区免费丨| 亚洲精品美女久久777777| 亚洲精品乱码久久久久久中文字幕| 亚洲色大成网站www久久九|