• <ins id="pjuwb"></ins>
    <blockquote id="pjuwb"><pre id="pjuwb"></pre></blockquote>
    <noscript id="pjuwb"></noscript>
          <sup id="pjuwb"><pre id="pjuwb"></pre></sup>
            <dd id="pjuwb"></dd>
            <abbr id="pjuwb"></abbr>

            POJ 1157 LITTLE SHOP OF FLOWERS 動態(tài)規(guī)劃

            Description

            You want to arrange the window of your flower shop in a most pleasant way. You have F bunches of flowers, each being of a different kind, and at least as many vases ordered in a row. The vases are glued onto the shelf and are numbered consecutively 1 through V, where V is the number of vases, from left to right so that the vase 1 is the leftmost, and the vase V is the rightmost vase. The bunches are moveable and are uniquely identified by integers between 1 and F. These id-numbers have a significance: They determine the required order of appearance of the flower bunches in the row of vases so that the bunch i must be in a vase to the left of the vase containing bunch j whenever i < j. Suppose, for example, you have bunch of azaleas (id-number=1), a bunch of begonias (id-number=2) and a bunch of carnations (id-number=3). Now, all the bunches must be put into the vases keeping their id-numbers in order. The bunch of azaleas must be in a vase to the left of begonias, and the bunch of begonias must be in a vase to the left of carnations. If there are more vases than bunches of flowers then the excess will be left empty. A vase can hold only one bunch of flowers.

            Each vase has a distinct characteristic (just like flowers do). Hence, putting a bunch of flowers in a vase results in a certain aesthetic value, expressed by an integer. The aesthetic values are presented in a table as shown below. Leaving a vase empty has an aesthetic value of 0.
             

            V A S E S

            1

            2

            3

            4

            5

            Bunches

            1 (azaleas)

            7 23 -5 -24 16

            2 (begonias)

            5 21 -4 10 23

            3 (carnations)

            -21

            5 -4 -20 20

            According to the table, azaleas, for example, would look great in vase 2, but they would look awful in vase 4.

            To achieve the most pleasant effect you have to maximize the sum of aesthetic values for the arrangement while keeping the required ordering of the flowers. If more than one arrangement has the maximal sum value, any one of them will be acceptable. You have to produce exactly one arrangement.

            Input

            • The first line contains two numbers: F, V.
            • The following F lines: Each of these lines contains V integers, so that Aij is given as the jth number on the (i+1)st line of the input file.


            • 1 <= F <= 100 where F is the number of the bunches of flowers. The bunches are numbered 1 through F.
            • F <= V <= 100 where V is the number of vases.
            • -50 <= Aij <= 50 where Aij is the aesthetic value obtained by putting the flower bunch i into the vase j.

            Output

            The first line will contain the sum of aesthetic values for your arrangement.

            Sample Input

            3 5
            7 23 -5 -24 16
            5 21 -4 10 23
            -21 5 -4 -20 20

            Sample Output

            53

            Source

                因為題目中規(guī)定若i<j,則第i束花必須出現(xiàn)在第j束花之前,根據(jù)這一條件,可以用花的數(shù)目來進行動態(tài)規(guī)劃。設dp[i,j]為前i束花插在前j個花瓶中的最大美學值,有狀態(tài)轉移方程:dp[i,j]=max(dp[i-1,k-1]+A[i,k]),其中i<=k<=j,A[i,k]為第i束花插在第k個花瓶中的美學值,規(guī)定dp[i,0]=0,1<=i<=F。
            #include<iostream>
            using namespace std;

            const int MAXN = 101;
            const int inf = 10000;
            int A[MAXN][MAXN],dp[MAXN][MAXN];

            int main(){
                
            int i,j,k,f,v,t;
                
            while(scanf("%d %d",&f,&v)!=EOF){
                    
            for(i=1;i<=f;i++){
                        dp[i][
            0]=0;
                        
            for(j=1;j<=v;j++){
                            scanf(
            "%d",&A[i][j]);
                            dp[i][j]
            =-1;
                        }

                    }

                    
            for(i=1;i<=f;i++)
                        
            for(j=1;j<=v;j++)
                            
            for(t=-inf,k=i;k<=j;k++){
                                t
            =max(t,dp[i-1][k-1]+A[i][k]);
                                
            if(dp[i][j]==-1 || dp[i][j]<t)
                                    dp[i][j]
            =t;
                            }

                    printf(
            "%d\n",dp[f][v]);
                }

                
            return 0;
            }

            posted on 2009-06-16 13:57 極限定律 閱讀(1455) 評論(1)  編輯 收藏 引用 所屬分類: ACM/ICPC

            評論

            # re: POJ 1157 LITTLE SHOP OF FLOWERS 動態(tài)規(guī)劃 2009-11-17 21:57 Gamor

            dp[i][j] = max(dp[i][j - 1], dp[i - 1][j - 1] + A[i][j])  回復  更多評論   

            <2009年5月>
            262728293012
            3456789
            10111213141516
            17181920212223
            24252627282930
            31123456

            導航

            統(tǒng)計

            常用鏈接

            留言簿(10)

            隨筆分類

            隨筆檔案

            友情鏈接

            搜索

            最新評論

            閱讀排行榜

            評論排行榜

            久久久精品视频免费观看| 亚洲国产精品无码久久98| 久久精品国产精品国产精品污| 无码人妻精品一区二区三区久久久 | 久久国产精品99精品国产| 国内精品久久国产大陆| 精品久久人人妻人人做精品| 伊人色综合久久天天人守人婷 | 久久精品aⅴ无码中文字字幕重口| 久久亚洲国产午夜精品理论片| 久久久久国产精品三级网| 久久久久成人精品无码中文字幕 | 久久婷婷人人澡人人| 久久亚洲AV成人出白浆无码国产| 国产精品热久久毛片| 伊人久久大香线蕉综合影院首页| 伊人久久大香线蕉精品| 久久综合给合久久狠狠狠97色| 久久久久国产精品麻豆AR影院 | 精品国产婷婷久久久| 久久亚洲精品人成综合网| 久久久国产99久久国产一| 麻豆精品久久精品色综合| 亚洲AV日韩AV天堂久久| 香蕉99久久国产综合精品宅男自 | 久久本道久久综合伊人| 97久久国产亚洲精品超碰热 | 久久笫一福利免费导航| 内射无码专区久久亚洲| 久久精品国产精品亚洲人人 | 三级三级久久三级久久| 久久久久黑人强伦姧人妻| 一本大道加勒比久久综合| 久久精品9988| 99久久精品国产麻豆| 国产成人精品久久免费动漫 | 久久亚洲欧洲国产综合| 久久99国产一区二区三区| 精品久久久久久久中文字幕| 色综合久久88色综合天天| 99久久婷婷国产一区二区|