• <ins id="pjuwb"></ins>
    <blockquote id="pjuwb"><pre id="pjuwb"></pre></blockquote>
    <noscript id="pjuwb"></noscript>
          <sup id="pjuwb"><pre id="pjuwb"></pre></sup>
            <dd id="pjuwb"></dd>
            <abbr id="pjuwb"></abbr>

            POJ 1157 LITTLE SHOP OF FLOWERS 動態規劃

            Description

            You want to arrange the window of your flower shop in a most pleasant way. You have F bunches of flowers, each being of a different kind, and at least as many vases ordered in a row. The vases are glued onto the shelf and are numbered consecutively 1 through V, where V is the number of vases, from left to right so that the vase 1 is the leftmost, and the vase V is the rightmost vase. The bunches are moveable and are uniquely identified by integers between 1 and F. These id-numbers have a significance: They determine the required order of appearance of the flower bunches in the row of vases so that the bunch i must be in a vase to the left of the vase containing bunch j whenever i < j. Suppose, for example, you have bunch of azaleas (id-number=1), a bunch of begonias (id-number=2) and a bunch of carnations (id-number=3). Now, all the bunches must be put into the vases keeping their id-numbers in order. The bunch of azaleas must be in a vase to the left of begonias, and the bunch of begonias must be in a vase to the left of carnations. If there are more vases than bunches of flowers then the excess will be left empty. A vase can hold only one bunch of flowers.

            Each vase has a distinct characteristic (just like flowers do). Hence, putting a bunch of flowers in a vase results in a certain aesthetic value, expressed by an integer. The aesthetic values are presented in a table as shown below. Leaving a vase empty has an aesthetic value of 0.
             

            V A S E S

            1

            2

            3

            4

            5

            Bunches

            1 (azaleas)

            7 23 -5 -24 16

            2 (begonias)

            5 21 -4 10 23

            3 (carnations)

            -21

            5 -4 -20 20

            According to the table, azaleas, for example, would look great in vase 2, but they would look awful in vase 4.

            To achieve the most pleasant effect you have to maximize the sum of aesthetic values for the arrangement while keeping the required ordering of the flowers. If more than one arrangement has the maximal sum value, any one of them will be acceptable. You have to produce exactly one arrangement.

            Input

            • The first line contains two numbers: F, V.
            • The following F lines: Each of these lines contains V integers, so that Aij is given as the jth number on the (i+1)st line of the input file.


            • 1 <= F <= 100 where F is the number of the bunches of flowers. The bunches are numbered 1 through F.
            • F <= V <= 100 where V is the number of vases.
            • -50 <= Aij <= 50 where Aij is the aesthetic value obtained by putting the flower bunch i into the vase j.

            Output

            The first line will contain the sum of aesthetic values for your arrangement.

            Sample Input

            3 5
            7 23 -5 -24 16
            5 21 -4 10 23
            -21 5 -4 -20 20

            Sample Output

            53

            Source

                因為題目中規定若i<j,則第i束花必須出現在第j束花之前,根據這一條件,可以用花的數目來進行動態規劃。設dp[i,j]為前i束花插在前j個花瓶中的最大美學值,有狀態轉移方程:dp[i,j]=max(dp[i-1,k-1]+A[i,k]),其中i<=k<=j,A[i,k]為第i束花插在第k個花瓶中的美學值,規定dp[i,0]=0,1<=i<=F。
            #include<iostream>
            using namespace std;

            const int MAXN = 101;
            const int inf = 10000;
            int A[MAXN][MAXN],dp[MAXN][MAXN];

            int main(){
                
            int i,j,k,f,v,t;
                
            while(scanf("%d %d",&f,&v)!=EOF){
                    
            for(i=1;i<=f;i++){
                        dp[i][
            0]=0;
                        
            for(j=1;j<=v;j++){
                            scanf(
            "%d",&A[i][j]);
                            dp[i][j]
            =-1;
                        }

                    }

                    
            for(i=1;i<=f;i++)
                        
            for(j=1;j<=v;j++)
                            
            for(t=-inf,k=i;k<=j;k++){
                                t
            =max(t,dp[i-1][k-1]+A[i][k]);
                                
            if(dp[i][j]==-1 || dp[i][j]<t)
                                    dp[i][j]
            =t;
                            }

                    printf(
            "%d\n",dp[f][v]);
                }

                
            return 0;
            }

            posted on 2009-06-16 13:57 極限定律 閱讀(1456) 評論(1)  編輯 收藏 引用 所屬分類: ACM/ICPC

            評論

            # re: POJ 1157 LITTLE SHOP OF FLOWERS 動態規劃 2009-11-17 21:57 Gamor

            dp[i][j] = max(dp[i][j - 1], dp[i - 1][j - 1] + A[i][j])  回復  更多評論   

            <2009年6月>
            31123456
            78910111213
            14151617181920
            21222324252627
            2829301234
            567891011

            導航

            統計

            常用鏈接

            留言簿(10)

            隨筆分類

            隨筆檔案

            友情鏈接

            搜索

            最新評論

            閱讀排行榜

            評論排行榜

            91精品国产高清久久久久久91| 国产精品美女久久久久网| 嫩草影院久久99| 久久午夜福利电影| 国产精品久久久久蜜芽| 久久亚洲精品国产精品| 国产精品成人精品久久久| 久久精品人妻中文系列| 人人狠狠综合久久亚洲88| 日批日出水久久亚洲精品tv| 久久精品亚洲精品国产色婷 | 久久久久一区二区三区| 久久婷婷五月综合97色直播| 国产精品无码久久综合| 伊人久久一区二区三区无码| 久久香蕉国产线看观看乱码| 亚洲国产成人久久一区久久 | 久久久久99精品成人片欧美| 久久国产精品波多野结衣AV| 久久99久久成人免费播放| 久久久久人妻精品一区| 久久人人爽人人爽人人av东京热 | 久久夜色精品国产亚洲| 亚洲欧美伊人久久综合一区二区 | 国产精品久久久天天影视| 久久精品综合网| 久久久久波多野结衣高潮| 久久久精品日本一区二区三区| 观看 国产综合久久久久鬼色 欧美 亚洲 一区二区 | 狠狠久久亚洲欧美专区| 亚洲国产精久久久久久久| 亚洲色大成网站www久久九| 精品国产乱码久久久久久1区2区| 亚洲欧美另类日本久久国产真实乱对白| 久久96国产精品久久久| AV狠狠色丁香婷婷综合久久| 精品国产乱码久久久久久1区2区| 97精品伊人久久大香线蕉app| 久久久久久久亚洲Av无码| 久久精品麻豆日日躁夜夜躁| 久久99国产综合精品女同|