• <ins id="pjuwb"></ins>
    <blockquote id="pjuwb"><pre id="pjuwb"></pre></blockquote>
    <noscript id="pjuwb"></noscript>
          <sup id="pjuwb"><pre id="pjuwb"></pre></sup>
            <dd id="pjuwb"></dd>
            <abbr id="pjuwb"></abbr>

            POJ 1157 LITTLE SHOP OF FLOWERS 動態規劃

            Description

            You want to arrange the window of your flower shop in a most pleasant way. You have F bunches of flowers, each being of a different kind, and at least as many vases ordered in a row. The vases are glued onto the shelf and are numbered consecutively 1 through V, where V is the number of vases, from left to right so that the vase 1 is the leftmost, and the vase V is the rightmost vase. The bunches are moveable and are uniquely identified by integers between 1 and F. These id-numbers have a significance: They determine the required order of appearance of the flower bunches in the row of vases so that the bunch i must be in a vase to the left of the vase containing bunch j whenever i < j. Suppose, for example, you have bunch of azaleas (id-number=1), a bunch of begonias (id-number=2) and a bunch of carnations (id-number=3). Now, all the bunches must be put into the vases keeping their id-numbers in order. The bunch of azaleas must be in a vase to the left of begonias, and the bunch of begonias must be in a vase to the left of carnations. If there are more vases than bunches of flowers then the excess will be left empty. A vase can hold only one bunch of flowers.

            Each vase has a distinct characteristic (just like flowers do). Hence, putting a bunch of flowers in a vase results in a certain aesthetic value, expressed by an integer. The aesthetic values are presented in a table as shown below. Leaving a vase empty has an aesthetic value of 0.
             

            V A S E S

            1

            2

            3

            4

            5

            Bunches

            1 (azaleas)

            7 23 -5 -24 16

            2 (begonias)

            5 21 -4 10 23

            3 (carnations)

            -21

            5 -4 -20 20

            According to the table, azaleas, for example, would look great in vase 2, but they would look awful in vase 4.

            To achieve the most pleasant effect you have to maximize the sum of aesthetic values for the arrangement while keeping the required ordering of the flowers. If more than one arrangement has the maximal sum value, any one of them will be acceptable. You have to produce exactly one arrangement.

            Input

            • The first line contains two numbers: F, V.
            • The following F lines: Each of these lines contains V integers, so that Aij is given as the jth number on the (i+1)st line of the input file.


            • 1 <= F <= 100 where F is the number of the bunches of flowers. The bunches are numbered 1 through F.
            • F <= V <= 100 where V is the number of vases.
            • -50 <= Aij <= 50 where Aij is the aesthetic value obtained by putting the flower bunch i into the vase j.

            Output

            The first line will contain the sum of aesthetic values for your arrangement.

            Sample Input

            3 5
            7 23 -5 -24 16
            5 21 -4 10 23
            -21 5 -4 -20 20

            Sample Output

            53

            Source

                因為題目中規定若i<j,則第i束花必須出現在第j束花之前,根據這一條件,可以用花的數目來進行動態規劃。設dp[i,j]為前i束花插在前j個花瓶中的最大美學值,有狀態轉移方程:dp[i,j]=max(dp[i-1,k-1]+A[i,k]),其中i<=k<=j,A[i,k]為第i束花插在第k個花瓶中的美學值,規定dp[i,0]=0,1<=i<=F。
            #include<iostream>
            using namespace std;

            const int MAXN = 101;
            const int inf = 10000;
            int A[MAXN][MAXN],dp[MAXN][MAXN];

            int main(){
                
            int i,j,k,f,v,t;
                
            while(scanf("%d %d",&f,&v)!=EOF){
                    
            for(i=1;i<=f;i++){
                        dp[i][
            0]=0;
                        
            for(j=1;j<=v;j++){
                            scanf(
            "%d",&A[i][j]);
                            dp[i][j]
            =-1;
                        }

                    }

                    
            for(i=1;i<=f;i++)
                        
            for(j=1;j<=v;j++)
                            
            for(t=-inf,k=i;k<=j;k++){
                                t
            =max(t,dp[i-1][k-1]+A[i][k]);
                                
            if(dp[i][j]==-1 || dp[i][j]<t)
                                    dp[i][j]
            =t;
                            }

                    printf(
            "%d\n",dp[f][v]);
                }

                
            return 0;
            }

            posted on 2009-06-16 13:57 極限定律 閱讀(1456) 評論(1)  編輯 收藏 引用 所屬分類: ACM/ICPC

            評論

            # re: POJ 1157 LITTLE SHOP OF FLOWERS 動態規劃 2009-11-17 21:57 Gamor

            dp[i][j] = max(dp[i][j - 1], dp[i - 1][j - 1] + A[i][j])  回復  更多評論   

            <2009年6月>
            31123456
            78910111213
            14151617181920
            21222324252627
            2829301234
            567891011

            導航

            統計

            常用鏈接

            留言簿(10)

            隨筆分類

            隨筆檔案

            友情鏈接

            搜索

            最新評論

            閱讀排行榜

            評論排行榜

            亚洲国产天堂久久综合网站| 久久精品国产欧美日韩99热| 欧美黑人激情性久久| 亚洲国产精品无码久久九九| 久久亚洲AV无码精品色午夜| 久久精品国产乱子伦| 国产成人久久精品二区三区| 久久中文精品无码中文字幕| 亚洲AV无码一区东京热久久 | 久久久久久毛片免费播放| www久久久天天com| 亚洲&#228;v永久无码精品天堂久久 | 久久精品国产99国产精品导航| 东方aⅴ免费观看久久av| 久久激情亚洲精品无码?V| 99久久香蕉国产线看观香| 国产V亚洲V天堂无码久久久| 亚洲国产一成久久精品国产成人综合 | 国产精品伊人久久伊人电影| 精品久久久久成人码免费动漫 | 人人狠狠综合久久亚洲高清| 久久天天婷婷五月俺也去| 国产精品无码久久综合| yy6080久久| 久久久久亚洲精品天堂久久久久久| 精品多毛少妇人妻AV免费久久 | 精品久久久久久成人AV| 久久人人爽人人爽人人片AV麻豆 | 日韩欧美亚洲综合久久| 9999国产精品欧美久久久久久| 无码精品久久久久久人妻中字| 久久99久久无码毛片一区二区| 99久久国产免费福利| 国产精品久久久亚洲| 无码AV波多野结衣久久| 久久精品国产免费观看三人同眠| 久久综合鬼色88久久精品综合自在自线噜噜| 久久91综合国产91久久精品| 国产午夜精品久久久久免费视 | 国产精品欧美久久久久无广告| 久久国产亚洲高清观看|