• <ins id="pjuwb"></ins>
    <blockquote id="pjuwb"><pre id="pjuwb"></pre></blockquote>
    <noscript id="pjuwb"></noscript>
          <sup id="pjuwb"><pre id="pjuwb"></pre></sup>
            <dd id="pjuwb"></dd>
            <abbr id="pjuwb"></abbr>

            POJ 1151 Atlantis 離散化+掃描線

            Problem Description
            There are several ancient Greek texts that contain descriptions of the fabled island Atlantis. Some of these texts even include maps of parts of the island. But unfortunately, these maps describe different regions of Atlantis. Your friend Bill has to know the total area for which maps exist. You (unwisely) volunteered to write a program that calculates this quantity.
             

            Input
            The input file consists of several test cases. Each test case starts with a line containing a single integer n (1<=n<=100) of available maps. The n following lines describe one map each. Each of these lines contains four numbers x1;y1;x2;y2 (0<=x1<x2<=100000;0<=y1<y2<=100000), not necessarily integers. The values (x1; y1) and (x2;y2) are the coordinates of the top-left resp. bottom-right corner of the mapped area.

            The input file is terminated by a line containing a single 0. Don’t process it.
             

            Output
            For each test case, your program should output one section. The first line of each section must be “Test case #k”, where k is the number of the test case (starting with 1). The second one must be “Total explored area: a”, where a is the total explored area (i.e. the area of the union of all rectangles in this test case), printed exact to two digits to the right of the decimal point.

            Output a blank line after each test case.
             

            Sample Input
            2
            10 10 20 20
            15 15 25 25.5
            0
             

            Sample Output
            Test case #1
            Total explored area: 180.00 
                題目的意思是給定n個矩形的2n個坐標,求矩形的覆蓋面積。如果開一個大的bool數組,將覆蓋過的部分更新為true,再從頭到尾掃描一遍,在坐標范圍比較小的情況下,可以求解。但是如果坐標x,y的取值范圍很大,比如[-10^8,10^8],用上面這個方法就不能求解了;而且坐標還有可能是實數,上面的方法就更加不可行了,需要尋找一種新的解法,就是下面要說到的“離散化”。
                注意到要表示一個矩形,只需要知道其2個頂點的坐標就可以了(最左下,最右上)。可以用2個數組x[0...2n-1],y[0...2n-1]記錄下矩形Ri的2個坐標(x1,y1),(x2,y2),然后將數組x[0...xn-1],y[0...2n-1]排序,為下一步的掃描線作準備,這就是離散化的思想。這題還可以用線段樹做進一步優化,但是這里只介紹離散化的思想。
                看下面這個例子:有2個矩形(1,1),(3,3)和(2,2),(4,4)。如圖:
                圖中虛線表示掃描線,下一步工作只需要將這2個矩形覆蓋過的部分的bool數組的對應位置更新為true,接下去用掃描線從左到右,從上到下掃描一遍,就可以求出矩形覆蓋的總面積。
                這個圖對應的bool數組的值如下:
                1 1 0                       1 2 3
                1 1 1       <---->       4 5 6
                0 1 1                       7 8 9
             1 #include <iostream>
             2 #include <cmath>
             3 using namespace std;
             4 
             5 const int N = 101;
             6 const double eps = 1e-6;
             7 double ans,x[2*N],y[2*N];
             8 double pos[N][4];
             9 bool hash[2*N][2*N];
            10 
            11 int cmp(const void *a,const  void *b){
            12     double *aa = (double *)a;
            13     double *bb = (double *)b;
            14     if(fabs(*aa-*bb)<=eps) return 0;
            15     else if(*aa-*bb>0return 1;
            16     else return -1;
            17 }
            18 int main(){
            19     int i,j,k,n,x1,x2,y1,y2,ca=1;
            20     while(scanf("%d",&n),n){
            21         for(ans=i=k=0;i<n;i++,k+=2){
            22             scanf("%lf %lf %lf %lf",&pos[i][0],&pos[i][1],&pos[i][2],&pos[i][3]);
            23             x[k]=pos[i][0],y[k]=pos[i][1],x[k+1]=pos[i][2],y[k+1]=pos[i][3];
            24         }
            25         memset(hash,false,sizeof(hash));
            26         qsort(x,2*n,sizeof(x[0]),cmp);
            27         qsort(y,2*n,sizeof(y[0]),cmp);
            28         for(i=0;i<n;i++){
            29             for(k=0;fabs(x[k]-pos[i][0])>eps;k++); x1=k;
            30             for(k=0;fabs(y[k]-pos[i][1])>eps;k++); y1=k;
            31             for(k=0;fabs(x[k]-pos[i][2])>eps;k++); x2=k;
            32             for(k=0;fabs(y[k]-pos[i][3])>eps;k++); y2=k;
            33             for(j=x1;j<x2;j++for(k=y1;k<y2;k++)
            34                 hash[j][k]=true;
            35         }
            36         for(i=0;i<2*n-1;i++)
            37             for(j=0;j<2*n-1;j++)
            38                 ans+=hash[i][j]*(x[i+1]-x[i])*(y[j+1]-y[j]);            
            39         printf("Test case #%d\n",ca++);
            40         printf("Total explored area: %.2lf\n",ans);
            41         printf("\n");
            42     }
            43     return 0;
            44 }

            posted on 2009-04-26 19:43 極限定律 閱讀(728) 評論(0)  編輯 收藏 引用 所屬分類: ACM/ICPC

            <2009年4月>
            2930311234
            567891011
            12131415161718
            19202122232425
            262728293012
            3456789

            導航

            統計

            常用鏈接

            留言簿(10)

            隨筆分類

            隨筆檔案

            友情鏈接

            搜索

            最新評論

            閱讀排行榜

            評論排行榜

            久久久精品国产| 久久久久99这里有精品10| 蜜桃麻豆www久久国产精品| 久久精品国产99国产电影网| 久久99国产精品久久99| 97久久精品人妻人人搡人人玩| 久久精品国产只有精品2020 | 久久婷婷五月综合色高清| 久久精品国产久精国产思思| 久久99精品综合国产首页| 国产成人久久久精品二区三区| 亚洲人AV永久一区二区三区久久 | 精品久久无码中文字幕| 国产综合精品久久亚洲| 亚洲中文字幕无码久久精品1| 国产精品久久久久久吹潮| 99久久亚洲综合精品网站| 亚洲国产精品狼友中文久久久| 久久久久久久久久久精品尤物| 国产精品狼人久久久久影院| 久久久久久午夜精品| 2020最新久久久视精品爱| 伊人热热久久原色播放www| 久久亚洲国产午夜精品理论片| 亚洲AV日韩精品久久久久久| 国产精品中文久久久久久久| 久久久噜噜噜久久| 久久电影网一区| 麻豆一区二区99久久久久| 欧洲性大片xxxxx久久久| 久久激情亚洲精品无码?V| 国内精品久久久久久久亚洲| 久久精品国产亚洲AV不卡| 婷婷久久五月天| 国产精品日韩欧美久久综合| a级成人毛片久久| 99999久久久久久亚洲| 国产精品久久99| 久久不见久久见免费视频7| 久久精品黄AA片一区二区三区| 久久人人爽人人人人片av|