• <ins id="pjuwb"></ins>
    <blockquote id="pjuwb"><pre id="pjuwb"></pre></blockquote>
    <noscript id="pjuwb"></noscript>
          <sup id="pjuwb"><pre id="pjuwb"></pre></sup>
            <dd id="pjuwb"></dd>
            <abbr id="pjuwb"></abbr>

            POJ 1151 Atlantis 離散化+掃描線

            Problem Description
            There are several ancient Greek texts that contain descriptions of the fabled island Atlantis. Some of these texts even include maps of parts of the island. But unfortunately, these maps describe different regions of Atlantis. Your friend Bill has to know the total area for which maps exist. You (unwisely) volunteered to write a program that calculates this quantity.
             

            Input
            The input file consists of several test cases. Each test case starts with a line containing a single integer n (1<=n<=100) of available maps. The n following lines describe one map each. Each of these lines contains four numbers x1;y1;x2;y2 (0<=x1<x2<=100000;0<=y1<y2<=100000), not necessarily integers. The values (x1; y1) and (x2;y2) are the coordinates of the top-left resp. bottom-right corner of the mapped area.

            The input file is terminated by a line containing a single 0. Don’t process it.
             

            Output
            For each test case, your program should output one section. The first line of each section must be “Test case #k”, where k is the number of the test case (starting with 1). The second one must be “Total explored area: a”, where a is the total explored area (i.e. the area of the union of all rectangles in this test case), printed exact to two digits to the right of the decimal point.

            Output a blank line after each test case.
             

            Sample Input
            2
            10 10 20 20
            15 15 25 25.5
            0
             

            Sample Output
            Test case #1
            Total explored area: 180.00 
                題目的意思是給定n個矩形的2n個坐標,求矩形的覆蓋面積。如果開一個大的bool數組,將覆蓋過的部分更新為true,再從頭到尾掃描一遍,在坐標范圍比較小的情況下,可以求解。但是如果坐標x,y的取值范圍很大,比如[-10^8,10^8],用上面這個方法就不能求解了;而且坐標還有可能是實數,上面的方法就更加不可行了,需要尋找一種新的解法,就是下面要說到的“離散化”。
                注意到要表示一個矩形,只需要知道其2個頂點的坐標就可以了(最左下,最右上)。可以用2個數組x[0...2n-1],y[0...2n-1]記錄下矩形Ri的2個坐標(x1,y1),(x2,y2),然后將數組x[0...xn-1],y[0...2n-1]排序,為下一步的掃描線作準備,這就是離散化的思想。這題還可以用線段樹做進一步優化,但是這里只介紹離散化的思想。
                看下面這個例子:有2個矩形(1,1),(3,3)和(2,2),(4,4)。如圖:
                圖中虛線表示掃描線,下一步工作只需要將這2個矩形覆蓋過的部分的bool數組的對應位置更新為true,接下去用掃描線從左到右,從上到下掃描一遍,就可以求出矩形覆蓋的總面積。
                這個圖對應的bool數組的值如下:
                1 1 0                       1 2 3
                1 1 1       <---->       4 5 6
                0 1 1                       7 8 9
             1 #include <iostream>
             2 #include <cmath>
             3 using namespace std;
             4 
             5 const int N = 101;
             6 const double eps = 1e-6;
             7 double ans,x[2*N],y[2*N];
             8 double pos[N][4];
             9 bool hash[2*N][2*N];
            10 
            11 int cmp(const void *a,const  void *b){
            12     double *aa = (double *)a;
            13     double *bb = (double *)b;
            14     if(fabs(*aa-*bb)<=eps) return 0;
            15     else if(*aa-*bb>0return 1;
            16     else return -1;
            17 }
            18 int main(){
            19     int i,j,k,n,x1,x2,y1,y2,ca=1;
            20     while(scanf("%d",&n),n){
            21         for(ans=i=k=0;i<n;i++,k+=2){
            22             scanf("%lf %lf %lf %lf",&pos[i][0],&pos[i][1],&pos[i][2],&pos[i][3]);
            23             x[k]=pos[i][0],y[k]=pos[i][1],x[k+1]=pos[i][2],y[k+1]=pos[i][3];
            24         }
            25         memset(hash,false,sizeof(hash));
            26         qsort(x,2*n,sizeof(x[0]),cmp);
            27         qsort(y,2*n,sizeof(y[0]),cmp);
            28         for(i=0;i<n;i++){
            29             for(k=0;fabs(x[k]-pos[i][0])>eps;k++); x1=k;
            30             for(k=0;fabs(y[k]-pos[i][1])>eps;k++); y1=k;
            31             for(k=0;fabs(x[k]-pos[i][2])>eps;k++); x2=k;
            32             for(k=0;fabs(y[k]-pos[i][3])>eps;k++); y2=k;
            33             for(j=x1;j<x2;j++for(k=y1;k<y2;k++)
            34                 hash[j][k]=true;
            35         }
            36         for(i=0;i<2*n-1;i++)
            37             for(j=0;j<2*n-1;j++)
            38                 ans+=hash[i][j]*(x[i+1]-x[i])*(y[j+1]-y[j]);            
            39         printf("Test case #%d\n",ca++);
            40         printf("Total explored area: %.2lf\n",ans);
            41         printf("\n");
            42     }
            43     return 0;
            44 }

            posted on 2009-04-26 19:43 極限定律 閱讀(730) 評論(0)  編輯 收藏 引用 所屬分類: ACM/ICPC

            <2012年6月>
            272829303112
            3456789
            10111213141516
            17181920212223
            24252627282930
            1234567

            導航

            統計

            常用鏈接

            留言簿(10)

            隨筆分類

            隨筆檔案

            友情鏈接

            搜索

            最新評論

            閱讀排行榜

            評論排行榜

            国产成人综合久久综合| 精品永久久福利一区二区| 精品久久久久久综合日本| 国产精品99久久久久久董美香| 久久久久综合网久久| 香蕉久久久久久狠狠色| 久久久久亚洲精品无码蜜桃| 青草影院天堂男人久久| 欧美成a人片免费看久久| 日韩AV无码久久一区二区| 青青草原综合久久大伊人导航| 九九久久99综合一区二区| 久久久免费观成人影院| 久久国产亚洲精品无码| 亚洲人成网站999久久久综合| 国内精品久久久久影院免费| 久久久久国产视频电影| 国产精品欧美久久久久天天影视| 亚洲精品高清一二区久久| 久久亚洲精品中文字幕三区| 99久久无色码中文字幕人妻| 伊人精品久久久久7777| 亚洲欧美精品伊人久久| 91久久精品电影| 亚洲国产精品无码久久一线| 亚洲精品乱码久久久久久按摩| 久久国产一片免费观看| 99热精品久久只有精品| 久久99精品久久久久婷婷| 国产成人无码精品久久久性色 | 久久r热这里有精品视频| 99久久国产宗和精品1上映| 久久青青草原精品国产不卡| 久久综合综合久久97色| 久久免费美女视频| 91精品国产高清久久久久久91 | 国产精品成人99久久久久 | 久久久久无码国产精品不卡| 欧美激情精品久久久久| 久久综合久久综合九色| 国产精品久久免费|