• <ins id="pjuwb"></ins>
    <blockquote id="pjuwb"><pre id="pjuwb"></pre></blockquote>
    <noscript id="pjuwb"></noscript>
          <sup id="pjuwb"><pre id="pjuwb"></pre></sup>
            <dd id="pjuwb"></dd>
            <abbr id="pjuwb"></abbr>

            思勤無邪

            上學(xué)時(shí),因我年齡最小,個(gè)頭也最小,上課時(shí),就像大猩猩堆里的猴一般。如今,這猴偶爾也把最近的一些情況寫在這里。

               :: 首頁 :: 聯(lián)系 :: 聚合  :: 管理
              132 Posts :: 1 Stories :: 178 Comments :: 0 Trackbacks

            公告

                 吾日常三省吾身,曰思、曰勤、曰無邪。

            積分與排名

            • 積分 - 186005
            • 排名 - 140

            最新隨筆

            最新評論

            閱讀排行榜

            評論排行榜

            原文地址:http://blog.csdn.net/myan/archive/2006/04/03/649018.aspx

            接著理解矩陣。

            上一篇里說“矩陣是運(yùn)動(dòng)的描述”,到現(xiàn)在為止,好像大家都還沒什么意見。但是我相信早晚會(huì)有數(shù)學(xué)系出身的網(wǎng)友來拍板轉(zhuǎn)。因?yàn)檫\(yùn)動(dòng)這個(gè)概念,在數(shù)學(xué)和物理里是跟微積分聯(lián)系在一起的。我們學(xué)習(xí)微積分的時(shí)候,總會(huì)有人照本宣科地告訴你,初等數(shù)學(xué)是研究常量的數(shù)學(xué),是研究靜態(tài)的數(shù)學(xué),高等數(shù)學(xué)是變量的數(shù)學(xué),是研究運(yùn)動(dòng)的數(shù)學(xué)。大家口口相傳,差不多人人都知道這句話。但是真知道這句話說的是什么意思的人,好像也不多。簡而言之,在我們?nèi)祟惖慕?jīng)驗(yàn)里,運(yùn)動(dòng)是一個(gè)連續(xù)過程,從A點(diǎn)到B點(diǎn),就算走得最快的光,也是需要一個(gè)時(shí)間來逐點(diǎn)地經(jīng)過AB之間的路徑,這就帶來了連續(xù)性的概念。而連續(xù)這個(gè)事情,如果不定義極限的概念,根本就解釋不了。古希臘人的數(shù)學(xué)非常強(qiáng),但就是缺乏極限觀念,所以解釋不了運(yùn)動(dòng),被芝諾的那些著名悖論(飛箭不動(dòng)、飛毛腿阿喀琉斯跑不過烏龜?shù)人膫€(gè)悖論)搞得死去活來。因?yàn)檫@篇文章不是講微積分的,所以我就不多說了。有興趣的讀者可以去看看齊民友教授寫的《重溫微積分》。我就是讀了這本書開頭的部分,才明白“高等數(shù)學(xué)是研究運(yùn)動(dòng)的數(shù)學(xué)”這句話的道理。

            不過在我這個(gè)《理解矩陣》的文章里,“運(yùn)動(dòng)”的概念不是微積分中的連續(xù)性的運(yùn)動(dòng),而是瞬間發(fā)生的變化。比如這個(gè)時(shí)刻在A點(diǎn),經(jīng)過一個(gè)“運(yùn)動(dòng)”,一下子就“躍遷”到了B點(diǎn),其中不需要經(jīng)過A點(diǎn)與B點(diǎn)之間的任何一個(gè)點(diǎn)。這樣的“運(yùn)動(dòng)”,或者說“躍遷”,是違反我們?nèi)粘5慕?jīng)驗(yàn)的。不過了解一點(diǎn)量子物理常識(shí)的人,就會(huì)立刻指出,量子(例如電子)在不同的能量級軌道上跳躍,就是瞬間發(fā)生的,具有這樣一種躍遷行為。所以說,自然界中并不是沒有這種運(yùn)動(dòng)現(xiàn)象,只不過宏觀上我們觀察不到。但是不管怎么說,“運(yùn)動(dòng)”這個(gè)詞用在這里,還是容易產(chǎn)生歧義的,說得更確切些,應(yīng)該是“躍遷”。因此這句話可以改成:

            “矩陣是線性空間里躍遷的描述”。

            可是這樣說又太物理,也就是說太具體,而不夠數(shù)學(xué),也就是說不夠抽象。因此我們最后換用一個(gè)正牌的數(shù)學(xué)術(shù)語——變換,來描述這個(gè)事情。這樣一說,大家就應(yīng)該明白了,所謂變換,其實(shí)就是空間里從一個(gè)點(diǎn)(元素/對象)到另一個(gè)點(diǎn)(元素/對象)的躍遷。比如說,拓?fù)渥儞Q,就是在拓?fù)淇臻g里從一個(gè)點(diǎn)到另一個(gè)點(diǎn)的躍遷。再比如說,仿射變換,就是在仿射空間里從一個(gè)點(diǎn)到另一個(gè)點(diǎn)的躍遷。附帶說一下,這個(gè)仿射空間跟向量空間是親兄弟。做計(jì)算機(jī)圖形學(xué)的朋友都知道,盡管描述一個(gè)三維對象只需要三維向量,但所有的計(jì)算機(jī)圖形學(xué)變換矩陣都是4 x 4的。說其原因,很多書上都寫著“為了使用中方便”,這在我看來簡直就是企圖蒙混過關(guān)。真正的原因,是因?yàn)樵谟?jì)算機(jī)圖形學(xué)里應(yīng)用的圖形變換,實(shí)際上是在仿射空間而不是向量空間中進(jìn)行的。想想看,在向量空間里相一個(gè)向量平行移動(dòng)以后仍是相同的那個(gè)向量,而現(xiàn)實(shí)世界等長的兩個(gè)平行線段當(dāng)然不能被認(rèn)為同一個(gè)東西,所以計(jì)算機(jī)圖形學(xué)的生存空間實(shí)際上是仿射空間。而仿射變換的矩陣表示根本就是4 x 4的。又扯遠(yuǎn)了,有興趣的讀者可以去看《計(jì)算機(jī)圖形學(xué)——幾何工具算法詳解》。

            一旦我們理解了“變換”這個(gè)概念,矩陣的定義就變成:

            “矩陣是線性空間里的變換的描述。”

            到這里為止,我們終于得到了一個(gè)看上去比較數(shù)學(xué)的定義。不過還要多說幾句。教材上一般是這么說的,在一個(gè)線性空間V里的一個(gè)線性變換T,當(dāng)選定一組基之后,就可以表示為矩陣。因此我們還要說清楚到底什么是線性變換,什么是基,什么叫選定一組基。線性變換的定義是很簡單的,設(shè)有一種變換T,使得對于線性空間V中間任何兩個(gè)不相同的對象x和y,以及任意實(shí)數(shù)a和b,有:
            T(ax + by) = aT(x) + bT(y),
            那么就稱T為線性變換。

            定義都是這么寫的,但是光看定義還得不到直覺的理解。線性變換究竟是一種什么樣的變換?我們剛才說了,變換是從空間的一個(gè)點(diǎn)躍遷到另一個(gè)點(diǎn),而線性變換,就是從一個(gè)線性空間V的某一個(gè)點(diǎn)躍遷到另一個(gè)線性空間W的另一個(gè)點(diǎn)的運(yùn)動(dòng)。這句話里蘊(yùn)含著一層意思,就是說一個(gè)點(diǎn)不僅可以變換到同一個(gè)線性空間中的另一個(gè)點(diǎn),而且可以變換到另一個(gè)線性空間中的另一個(gè)點(diǎn)去。不管你怎么變,只要變換前后都是線性空間中的對象,這個(gè)變換就一定是線性變換,也就一定可以用一個(gè)非奇異矩陣來描述。而你用一個(gè)非奇異矩陣去描述的一個(gè)變換,一定是一個(gè)線性變換。有的人可能要問,這里為什么要強(qiáng)調(diào)非奇異矩陣?所謂非奇異,只對方陣有意義,那么非方陣的情況怎么樣?這個(gè)說起來就會(huì)比較冗長了,最后要把線性變換作為一種映射,并且討論其映射性質(zhì),以及線性變換的核與像等概念才能徹底講清楚。我覺得這個(gè)不算是重點(diǎn),如果確實(shí)有時(shí)間的話,以后寫一點(diǎn)。以下我們只探討最常用、最有用的一種變換,就是在同一個(gè)線性空間之內(nèi)的線性變換。也就是說,下面所說的矩陣,不作說明的話,就是方陣,而且是非奇異方陣。學(xué)習(xí)一門學(xué)問,最重要的是把握主干內(nèi)容,迅速建立對于這門學(xué)問的整體概念,不必一開始就考慮所有的細(xì)枝末節(jié)和特殊情況,自亂陣腳。

            接著往下說,什么是基呢?這個(gè)問題在后面還要大講一番,這里只要把基看成是線性空間里的坐標(biāo)系就可以了。注意是坐標(biāo)系,不是坐標(biāo)值,這兩者可是一個(gè)“對立矛盾統(tǒng)一體”。這樣一來,“選定一組基”就是說在線性空間里選定一個(gè)坐標(biāo)系。就這意思。

            好,最后我們把矩陣的定義完善如下:

            “矩陣是線性空間中的線性變換的一個(gè)描述。在一個(gè)線性空間中,只要我們選定一組基,那么對于任何一個(gè)線性變換,都能夠用一個(gè)確定的矩陣來加以描述。”

            理解這句話的關(guān)鍵,在于把“線性變換”與“線性變換的一個(gè)描述”區(qū)別開。一個(gè)是那個(gè)對象,一個(gè)是對那個(gè)對象的表述。就好像我們熟悉的面向?qū)ο缶幊讨校粋€(gè)對象可以有多個(gè)引用,每個(gè)引用可以叫不同的名字,但都是指的同一個(gè)對象。如果還不形象,那就干脆來個(gè)很俗的類比。

            比如有一頭豬,你打算給它拍照片,只要你給照相機(jī)選定了一個(gè)鏡頭位置,那么就可以給這頭豬拍一張照片。這個(gè)照片可以看成是這頭豬的一個(gè)描述,但只是一個(gè)片面的的描述,因?yàn)閾Q一個(gè)鏡頭位置給這頭豬拍照,能得到一張不同的照片,也是這頭豬的另一個(gè)片面的描述。所有這樣照出來的照片都是這同一頭豬的描述,但是又都不是這頭豬本身。

            同樣的,對于一個(gè)線性變換,只要你選定一組基,那么就可以找到一個(gè)矩陣來描述這個(gè)線性變換。換一組基,就得到一個(gè)不同的矩陣。所有這些矩陣都是這同一個(gè)線性變換的描述,但又都不是線性變換本身。

            但是這樣的話,問題就來了如果你給我兩張豬的照片,我怎么知道這兩張照片上的是同一頭豬呢?同樣的,你給我兩個(gè)矩陣,我怎么知道這兩個(gè)矩陣是描述的同一個(gè)線性變換呢?如果是同一個(gè)線性變換的不同的矩陣描述,那就是本家兄弟了,見面不認(rèn)識(shí),豈不成了笑話。

            好在,我們可以找到同一個(gè)線性變換的矩陣兄弟們的一個(gè)性質(zhì),那就是:

            若矩陣A與B是同一個(gè)線性變換的兩個(gè)不同的描述(之所以會(huì)不同,是因?yàn)檫x定了不同的基,也就是選定了不同的坐標(biāo)系),則一定能找到一個(gè)非奇異矩陣P,使得A、B之間滿足這樣的關(guān)系:

            A = P-1BP

            線性代數(shù)稍微熟一點(diǎn)的讀者一下就看出來,這就是相似矩陣的定義。沒錯(cuò),所謂相似矩陣,就是同一個(gè)線性變換的不同的描述矩陣。按照這個(gè)定義,同一頭豬的不同角度的照片也可以成為相似照片。俗了一點(diǎn),不過能讓人明白。

            而在上面式子里那個(gè)矩陣P,其實(shí)就是A矩陣所基于的基與B矩陣所基于的基這兩組基之間的一個(gè)變換關(guān)系。關(guān)于這個(gè)結(jié)論,可以用一種非常直覺的方法來證明(而不是一般教科書上那種形式上的證明),如果有時(shí)間的話,我以后在blog里補(bǔ)充這個(gè)證明。

            這個(gè)發(fā)現(xiàn)太重要了。原來一族相似矩陣都是同一個(gè)線性變換的描述啊!難怪這么重要!工科研究生課程中有矩陣論、矩陣分析等課程,其中講了各種各樣的相似變換,比如什么相似標(biāo)準(zhǔn)型,對角化之類的內(nèi)容,都要求變換以后得到的那個(gè)矩陣與先前的那個(gè)矩陣式相似的,為什么這么要求?因?yàn)橹挥羞@樣要求,才能保證變換前后的兩個(gè)矩陣是描述同一個(gè)線性變換的。當(dāng)然,同一個(gè)線性變換的不同矩陣描述,從實(shí)際運(yùn)算性質(zhì)來看并不是不分好環(huán)的。有些描述矩陣就比其他的矩陣性質(zhì)好得多。這很容易理解,同一頭豬的照片也有美丑之分嘛。所以矩陣的相似變換可以把一個(gè)比較丑的矩陣變成一個(gè)比較美的矩陣,而保證這兩個(gè)矩陣都是描述了同一個(gè)線性變換。

            這樣一來,矩陣作為線性變換描述的一面,基本上說清楚了。但是,事情沒有那么簡單,或者說,線性代數(shù)還有比這更奇妙的性質(zhì),那就是,矩陣不僅可以作為線性變換的描述,而且可以作為一組基的描述。而作為變換的矩陣,不但可以把線性空間中的一個(gè)點(diǎn)給變換到另一個(gè)點(diǎn)去,而且也能夠把線性空間中的一個(gè)坐標(biāo)系(基)表換到另一個(gè)坐標(biāo)系(基)去。而且,變換點(diǎn)與變換坐標(biāo)系,具有異曲同工的效果。線性代數(shù)里最有趣的奧妙,就蘊(yùn)含在其中。理解了這些內(nèi)容,線性代數(shù)里很多定理和規(guī)則會(huì)變得更加清晰、直覺。

            這個(gè)留在下一篇再寫吧。

            因?yàn)橛袆e的事情要做,下一篇可能要過幾天再寫了。

            posted on 2006-07-05 14:27 思勤無邪 閱讀(472) 評論(0)  編輯 收藏 引用 所屬分類: 其他與技術(shù)相關(guān)
            日本加勒比久久精品| 久久午夜综合久久| 国产精品久久久久影院色| 热re99久久精品国99热| 久久精品亚洲中文字幕无码麻豆| 久久久久久久久无码精品亚洲日韩 | 久久精品免费观看| 欧美无乱码久久久免费午夜一区二区三区中文字幕 | 精品国产日韩久久亚洲| 乱亲女H秽乱长久久久| 国内精品久久久久久久影视麻豆 | 久久久久亚洲av无码专区喷水| 老司机国内精品久久久久| 久久久久无码国产精品不卡| 久久精品无码一区二区无码| 久久婷婷色综合一区二区| 97精品伊人久久大香线蕉app | 久久美女人爽女人爽| 无码久久精品国产亚洲Av影片 | 久久久青草青青亚洲国产免观| 久久99久国产麻精品66| 久久九九久精品国产免费直播| 久久精品国产亚洲AV麻豆网站| 久久99热这里只频精品6| 国产免费久久精品99久久| 99麻豆久久久国产精品免费| 亚洲av成人无码久久精品| 久久无码专区国产精品发布 | 久久亚洲精品无码aⅴ大香| 四虎影视久久久免费| 久久精品不卡| 国内精品久久久久久不卡影院| 国产欧美一区二区久久| 69国产成人综合久久精品| 久久精品国产亚洲AV大全| 久久精品欧美日韩精品| 色综合久久中文字幕无码| 久久久无码精品亚洲日韩蜜臀浪潮| 香港aa三级久久三级老师2021国产三级精品三级在 | 国产精品久久久久AV福利动漫| 亚洲中文字幕无码久久综合网|