/*
    題意:給出一棵樹,現(xiàn)在欲添加一條新邊,使得從起點出發(fā)遍歷所有點再回到起點總距離減少
    加一條新邊會形成一個環(huán),設(shè)在原來沒有環(huán)時遍歷這一段的點再回來距離為2*x
    現(xiàn)在加入環(huán)后,距離變?yōu)閤+y,所以問題其實就是求x-y的最大值
    n<=200,O(n^2)枚舉加入的邊即可
    注意一條路之間不能有點
    用floyd處理dist(a,b)
*/

#include
<cstdio>
#include
<cstring>
#include
<cmath>

inline 
int min(int a,int b){return a<b?a:b;}
inline 
int max(int a,int b){return a>b?a:b;}

const int MAXN = 205;
const double eps = 1e-6;
const double DINF = 1e20;

int x[MAXN],y[MAXN];
double w[MAXN][MAXN];

int main()
{
    
int N;
    
while(~scanf("%d",&N)){
        
for(int i=1;i<=N;i++)
            scanf(
"%d%d",&x[i],&y[i]);
        
for(int i=0;i<=N;i++)
            
for(int j=0;j<=N;j++)
                w[i][j]
=DINF;
        
int a,b;
        
for(int i=1;i<=N;i++){
            scanf(
"%d%d",&a,&b);
            w[a][b]
=w[b][a]=sqrt(0.0+(x[a]-x[b])*(x[a]-x[b])+(y[a]-y[b])*(y[a]-y[b]));
        }

        
//floyd
        for(int k=0;k<=N;k++)
            
for(int i=0;i<=N;i++)
                
if(w[i][k]+eps<DINF)
                
for(int j=0;j<=N;j++)
                    
if(w[i][j]>w[i][k]+w[k][j])w[i][j]=w[i][k]+w[k][j];
        
double Max = 0;
        
for(int i=0;i<=N;i++)
            
for(int j=i+1;j<=N;j++){
                
bool ok = true;
                
//check whether online
                for(int k=0;k<=N;k++)
                    
if(k!=i&&k!=j&&(x[i]-x[k])*(y[j]-y[k])==(x[j]-x[k])*(y[i]-y[k])
                        
&&x[k]<=max(x[i],x[j])&&x[k]>=min(x[i],x[j])&&y[k]<=max(y[i],y[j])&&y[k]>=min(y[i],y[j])
                    )
{                        
                        ok
=false;
                        
break;
                    }

                
if(ok){
                    
double tmp = w[i][j]-sqrt(0.0+(x[i]-x[j])*(x[i]-x[j])+(y[i]-y[j])*(y[i]-y[j]));    
                    
if(tmp>Max+eps){
                        Max
=tmp;
                        a
=i,b=j;
                    }

                }
            
            }

        
if(Max<eps)puts("-1");
        
else printf("%d %d\n",a,b);
    }

    
return 0;
}