• <ins id="pjuwb"></ins>
    <blockquote id="pjuwb"><pre id="pjuwb"></pre></blockquote>
    <noscript id="pjuwb"></noscript>
          <sup id="pjuwb"><pre id="pjuwb"></pre></sup>
            <dd id="pjuwb"></dd>
            <abbr id="pjuwb"></abbr>

            Error

            C++博客 首頁 新隨筆 聯系 聚合 管理
              217 Posts :: 61 Stories :: 32 Comments :: 0 Trackbacks
            先看下boost給的例子,我覺得有問題:

            #include
            <boost/atomic.hpp> class spinlock { private: typedef enum {Locked, Unlocked} LockState; boost::atomic<LockState> state_; public: spinlock() : state_(Unlocked) {} void lock() {
            // 可能這里的boost::memory_order_acquire有原子操作的效果吧,偶不是很理解,不過我覺得這里應該用cae操作才對 while (state_.exchange(Locked, boost::memory_order_acquire) == Locked) { /* busy-wait */ } } void unlock() {
            // 這里都直接寫不做檢查了,更加難以理解 state_.store(Unlocked, boost::memory_order_release); } };

            有可能是我不理解后面的內存訪問參數的意義,給下我自己的實現:
            class CESpinLock : boost::noncopyable
            {
            private:
                typedef 
            enum {emUnlocked = 0, emLocked} EM_LockState;

            public:
                CESpinLock() : m_atomicState(emLocked)
                {
                }

            public:
                
            void lock()
                {
                    EM_LockState state 
            = emUnlocked;
                    
            while(false == m_atomicState.compare_exchange_strong(state, emLocked))
                    {
                        state 
            = emUnlocked;
                    }
                }

                
            void unlock()
                {
                    EM_LockState state 
            = emLocked;
                    
            while(false == m_atomicState.compare_exchange_strong(state, emUnlocked))
                    {
                        state 
            = emLocked;
                    }
                }

            private:
                boost::atomic
            <EM_LockState> m_atomicState;
            };


            可以適當的在false里邊加一點sleep操作感覺。

            還有一點就是不太激烈這里的cae操作分兩種 strong和weak

            bool compare_exchange_weak(T & expected, T desired, memory_order success_order, memory_order failure_order)

            Compare current value with expected, change it to desired if matches. Returns true if an exchange has been performed, and always writes the previous value back in expected. May fail spuriously, so must generally be retried in a loop.

            bool compare_exchange_strong(T & expected, T desired, memory_order order)

            Compare current value with expected, change it to desired if matches. Returns true if an exchange has been performed, and always writes the previous value back in expected

            實在不理解 May fail spuriously, so must generally be retried in a loop.的意義,不過看了代碼,在win32的實現上,weak是調用了stong實現的。



             VCZH.粉絲數組[0]<errorcpp@qq.com>  21:49:07
            atomic的 compare_exchange_weak
            compare_exchange_weak
            有啥區別

            求解釋
            vczh.Iskandar<vczh@163.com>  21:49:27
            不是一樣嗎
            御虛舟北(314969051)  21:49:40
            改代碼中, ing
            VCZH.粉絲數組[0]<errorcpp@qq.com>  21:49:49
            Windows上的實現是一樣的
            May fail spuriously, so must generally be retried in a loop. 
            這一句怎么理解呢
            vczh.Iskandar<vczh@163.com>  21:50:07
            compare_exchange_weak
            compare_exchange_weak
            質量最大vczh粉(402740419)  21:50:14
            compare_exchange_weak
            compare_exchange_weak

            VCZH.粉絲數組[0]<errorcpp@qq.com>  21:50:16
            strong

            compare_exchange_strong
            還有一個問題
            class spinlock {
            private:
              typedef enum {Locked, Unlocked} LockState;
              boost::atomic<LockState> state_;

            public:
              spinlock() : state_(Unlocked) {}

              void lock()
              {
                while (state_.exchange(Locked, boost::memory_order_acquire) == Locked) {
                  /* busy-wait */
                }
              }
              void unlock()
              {
                state_.store(Unlocked, boost::memory_order_release);
              }
            };

            boost例子給的 spinloc
            怎么是這樣實現的
            都沒有用cae操作
            VCZH.粉絲數組[0]<errorcpp@qq.com>  21:51:20
            unlock都直接用store了
            vczh.Iskandar<vczh@163.com>  21:51:50
            不用compare
            VCZH.粉絲數組[0]<errorcpp@qq.com>  21:51:59
             為啥
            無法理解
            vczh.Iskandar<vczh@163.com>  21:52:34
            想要解釋好麻煩
            VCZH.粉絲數組[0]<errorcpp@qq.com>  21:52:40
            還有在Windows上
            boost::memory_order_acquire
            這個參數也沒用
            貌似
            求V神解釋
            還有strong和weak的區別
            質量最大vczh粉(402740419)  21:54:46
            spinlock本來就不用compare啊
            直接swap就行了
            while (state_.swap(1) == 1);
            VCZH.粉絲數組[0]<errorcpp@qq.com>  21:56:24
            你看假設現在是lock狀態
            boost的實現是無條件吧lock換成unlock
            如果是繼續lock 他還是lock
            VCZH.粉絲數組[0]<errorcpp@qq.com>  21:58:08
            只要要避免 重入吧
            lock之前檢查一下
            御虛舟北(314969051)  22:00:03
            小康你的書收到沒有
            質量最大vczh粉(402740419)  22:03:17
            VCZH.粉絲數組[0]<errorcpp@qq.com>  21:58:08
            只要要避免 重入吧
            lock之前檢查一下

            你用錯了他不管你
            就是這個意思
            同一個線程lock兩次也會死鎖
            VCZH.粉絲數組[0]<errorcpp@qq.com>  22:05:05
            原來是這樣

            但是他lock的時候不檢查,也會導致兩個線程同時lock吧?
            while (state_.exchange(Locked, boost::memory_order_acquire) == Locked) {
                  /* busy-wait */
                }

            質量最大vczh粉(402740419)  22:05:18
            不會啊
            假設A進程先來了,lock成功了
            VCZH.粉絲數組[0]<errorcpp@qq.com>  22:05:33
            怎能理解,我理解和直接賦值是一樣
            我再去看
            質量最大vczh粉(402740419)  22:05:40
            這不是復制
            是exchange
            swap
            另一個線程exchange就會收到Locked
            那么另一個線程就會while循環,直到原來線程給設置了Unlocked
            VCZH.粉絲數組[0]<errorcpp@qq.com>  22:06:47
            Exchange current value with new_value, returning current value 

            exchange是把新值寫入舊值返回么?  不是這樣么?
            我有點理解了
            質量最大vczh粉(402740419)  22:07:46
            對啊,新值寫入,舊值返回,原子的
            VCZH.粉絲數組[0]<errorcpp@qq.com>  22:07:59
            就是說寫入也是寫入的lock, 不影響之前的lock
            當前線程拿到舊值檢查是不是lock狀態,如果是就繼續嘗試直到不是
            質量最大vczh粉(402740419)  22:08:00
            所以只會有一個線程返回Unlocked,另一個線程會收到之前線程設置的Locked
            VCZH.粉絲數組[0]<errorcpp@qq.com>  22:08:11
             受教了
            質量最大vczh粉(402740419)  22:08:13

            VCZH.粉絲數組[0]<errorcpp@qq.com>  22:08:20
            我貼到博客上去 

            posted on 2013-03-31 21:49 Enic 閱讀(3801) 評論(1)  編輯 收藏 引用 所屬分類: cpp 1x and boost

            評論

            # re: boost::atomic 實現 spinlock 2013-03-31 23:52 Enic
            老外是這么說的:

            http://cbloomrants.blogspot.be/2011/07/07-14-11-compareexchangestrong-vs.html


            07-14-11 - compare_exchange_strong vs compare_exchange_weak

            The C++0x standard was revised a while ago to split compare_exchange (aka CAS) into two ops. A quick note on the difference :

            bool compare_exchange_weak( T * ptr, T * old, T new );

            bool compare_exchange_strong( T * ptr, T * old, T new );

            (BTW in the standard "old" is actually a reference, which is a damn shitty thing to do because it makes it very non-transparent that "old" gets mutated by these functions, so I am showing it as a pointer).
            both try to do :


            atomically {
            if ( *ptr == *old ) { *ptr = new; return true; }
            else { *old = *ptr; return false; }
            }

            the difference is that compare_exchange_weak can also return false for spurious failure. (the original C++0x definition of CAS always allowed spurious failure; the new thing is the _strong version which doesn't).
            If it returns due to spurious failure, then *old might be left untouched (and in fact, *ptr might be equal to *old but we failed anyway).

            If spurious failure can only occur due to contention, then you can still gaurantee progress. In fact in the real world, I believe that LL-SC architectures cannot gaurantee progress, because you can get spurious failure if there is contention anywhere on the cache line, and you need that contention to be specifically on your atomic variable to gaurantee progress. (I guess if you are really worried about this, then you should ensure that atomic variables are padded so they get their own cache line, which is generally good practice for performance reasons anyway).

            On "cache line lock" type architectures like x86, there is no such thing as spurious failure. compare_exchange just maps to "cmpxchg" instruction and you always get the swap that you want. (it can still fail of course, if the value was not equal to the old value, but it will reload old). (BTW it's likely that x86 will move away from this in the future, because it's very expensive for very high core counts)

            compare_exchange_weak exists for LL-SC (load linked/store conditional) type architectures (Power, ARM, basically everything except x86), because on them compare_exchange_strong must be implemented as a loop, while compare_exchange_weak can be non-looping. For example :

            On ARM, compare_exchange_weak is something like :

            compare_exchange_weak:

            ldrex // load with reservation
            teq // test equality
            strexeq // store if equal
            and strexeq can fail for two reasons - either because they weren't equal, or because the reservation was lost (because someone else touched our cache line).
            To implement compare_exchange_strong you need a loop :

            compare_exchange_strong:

            while ( ! compare_exchange_weak(ptr,old,new) ) { }

            (note that you might be tempted to put a (*old = *ptr) inside the loop, but that's probably not a good idea, and not necessary, because compare_exchange_weak will eventually load *ptr into *old itself when it doesn't fail spuriously).
            The funny bit is that when you use compare_exchange you often loop anyway. For example say I want to use compare_exchange_strong to increment a value, I have to do :


            cur = *ptr;
            while( ! compare_exchange_strong(ptr,&cur,cur+1) ) { }

            (note it's a little subtle that this works - when compare_exchange_strong fails, it's because somebody else touched *ptr, so we then reload cur (this is why "old" is passed by address), so you then recompute cur+1 from the new value; so with the compare_exchange_strong, cur has a different value each time around this loop.)
            But on an LL-SC architecture like ARM this becomes a loop on a loop, which is dumb when you could get the same result with a single loop :


            cur = *ptr;
            while( ! compare_exchange_weak(ptr,&cur,cur+1) ) { }

            Note that with this loop now cur does *not* always take a new value each time around the loop (it does when it fails due to contention, but not when it fails just due to reservation-lost), but the end result is the same.
            So that's why compare_exchange_weak exists, but you might ask why compare_exchange_strong exists. If we always use loops like this, then there's no need for it. But we don't always use loops like this, or we might want to loop at the much higher level. For example you might have something like :

            bool SpinLock_TryLock(int * lock)
            {
            int zero = 0;
            return compare_exchange_strong(lock,&zero,1);
            }
            which returns false if it couldn't get the lock (and then might do an OS wait) - you don't want to return false just because of a spurious failure. (that's not a great example, maybe I'll think of a better one later).
            (BTW I think the C++0x stuff is a little bit broken, like most of C standardization, because they are trying to straddle this middle ground of exposing the efficient hardware-specific ways of doing things, but they don't actually expose enough to map directly to the hardware, and they also aren't high level enough to separate you from knowing about the hardware. For example none of their memory model actually maps directly to what x86 provides, therefore there are some very efficient x86-specific ways to do threading ops that cannot be expressed portable in C++0x. Similarly on LL-SC architectures, it would be preferrable to just have access to LL-SC directly.

            I'd rather see things in the standard like "if LL-SC exist on this architecture, then they can be invoked via __ll() and __sc()" ; more generally I wish C had more conditionals built into the language, that would be so much better for real portability, as opposed to the current mess where they pretend that the language is portable but it actually isn't so you have to create your own mess of meta-language through #defines).  回復  更多評論
              

            中文字幕日本人妻久久久免费| 亚洲精品白浆高清久久久久久| 婷婷久久综合九色综合98| 久久免费的精品国产V∧ | 97久久精品人人做人人爽| 久久亚洲国产精品123区| 久久久久久久波多野结衣高潮| 久久婷婷五月综合国产尤物app| 青青青国产成人久久111网站| 欧美粉嫩小泬久久久久久久| 精品久久8x国产免费观看| 国产午夜精品理论片久久| 亚洲精品无码久久久影院相关影片 | 一级a性色生活片久久无| 久久亚洲春色中文字幕久久久| 久久青青草原国产精品免费| 91麻豆国产精品91久久久| 日本福利片国产午夜久久| 色欲av伊人久久大香线蕉影院| 久久久WWW免费人成精品| 久久久亚洲欧洲日产国码二区 | 亚洲国产精品综合久久网络| 国产91色综合久久免费分享| 久久精品中文字幕大胸| 国内精品久久久久久不卡影院| 久久久无码人妻精品无码| 久久精品免费全国观看国产| 久久精品中文字幕有码| 中文字幕亚洲综合久久| 久久精品国产亚洲AV麻豆网站| 久久毛片一区二区| 久久久久婷婷| 亚洲国产成人乱码精品女人久久久不卡| 久久精品国产精品亚洲精品| 国产精品久久午夜夜伦鲁鲁| 国产精品岛国久久久久| 久久久久久久久久久久中文字幕| 亚洲国产精品无码久久SM| 天天爽天天狠久久久综合麻豆| 久久精品日日躁夜夜躁欧美| 亚洲欧洲久久av|