• <ins id="pjuwb"></ins>
    <blockquote id="pjuwb"><pre id="pjuwb"></pre></blockquote>
    <noscript id="pjuwb"></noscript>
          <sup id="pjuwb"><pre id="pjuwb"></pre></sup>
            <dd id="pjuwb"></dd>
            <abbr id="pjuwb"></abbr>

            Geometric Transformations of Images

            https://docs.opencv.org/3.0-beta/doc/py_tutorials/py_imgproc/py_geometric_transformations/py_geometric_transformations.html

            Goals

            • Learn to apply different geometric transformation to images like translation, rotation, affine transformation etc.
            • You will see these functions: cv2.getPerspectiveTransform

            Transformations

            OpenCV provides two transformation functions, cv2.warpAffine and cv2.warpPerspective, with which you can have all kinds of transformations. cv2.warpAffine takes a 2x3 transformation matrix while cv2.warpPerspective takes a 3x3 transformation matrix as input.

            Scaling

            Scaling is just resizing of the image. OpenCV comes with a function cv2.resize() for this purpose. The size of the image can be specified manually, or you can specify the scaling factor. Different interpolation methods are used. Preferable interpolation methods are cv2.INTER_AREA for shrinking and cv2.INTER_CUBIC (slow) & cv2.INTER_LINEAR for zooming. By default, interpolation method used is cv2.INTER_LINEAR for all resizing purposes. You can resize an input image either of following methods:

            import cv2 import numpy as np  img = cv2.imread('messi5.jpg')  res = cv2.resize(img,None,fx=2, fy=2, interpolation = cv2.INTER_CUBIC)  #OR  height, width = img.shape[:2] res = cv2.resize(img,(2*width, 2*height), interpolation = cv2.INTER_CUBIC) 

            Translation

            Translation is the shifting of object’s location. If you know the shift in (x,y) direction, let it be (t_x,t_y), you can create the transformation matrix \textbf{M} as follows:

            M = \begin{bmatrix} 1 & 0 & t_x \\ 0 & 1 & t_y  \end{bmatrix}

            You can take make it into a Numpy array of type np.float32 and pass it into cv2.warpAffine() function. See below example for a shift of (100,50):

            import cv2 import numpy as np  img = cv2.imread('messi5.jpg',0) rows,cols = img.shape  M = np.float32([[1,0,100],[0,1,50]]) dst = cv2.warpAffine(img,M,(cols,rows))  cv2.imshow('img',dst) cv2.waitKey(0) cv2.destroyAllWindows() 

            Warning

             

            Third argument of the cv2.warpAffine() function is the size of the output image, which should be in the form of (width, height). Remember width = number of columns, and height = number of rows.

            See the result below:

            Translation

            Rotation

            Rotation of an image for an angle \theta is achieved by the transformation matrix of the form

            M = \begin{bmatrix} cos\theta & -sin\theta \\ sin\theta & cos\theta   \end{bmatrix}

            But OpenCV provides scaled rotation with adjustable center of rotation so that you can rotate at any location you prefer. Modified transformation matrix is given by

            \begin{bmatrix} \alpha &  \beta & (1- \alpha )  \cdot center.x -  \beta \cdot center.y \\ - \beta &  \alpha &  \beta \cdot center.x + (1- \alpha )  \cdot center.y \end{bmatrix}

            where:

            \begin{array}{l} \alpha =  scale \cdot \cos \theta , \\ \beta =  scale \cdot \sin \theta \end{array}

            To find this transformation matrix, OpenCV provides a function, cv2.getRotationMatrix2D. Check below example which rotates the image by 90 degree with respect to center without any scaling.

            img = cv2.imread('messi5.jpg',0) rows,cols = img.shape  M = cv2.getRotationMatrix2D((cols/2,rows/2),90,1) dst = cv2.warpAffine(img,M,(cols,rows)) 

            See the result:

            Rotation of Image

            Affine Transformation

            In affine transformation, all parallel lines in the original image will still be parallel in the output image. To find the transformation matrix, we need three points from input image and their corresponding locations in output image. Then cv2.getAffineTransform will create a 2x3 matrix which is to be passed to cv2.warpAffine.

            Check below example, and also look at the points I selected (which are marked in Green color):

            img = cv2.imread('drawing.png') rows,cols,ch = img.shape  pts1 = np.float32([[50,50],[200,50],[50,200]]) pts2 = np.float32([[10,100],[200,50],[100,250]])  M = cv2.getAffineTransform(pts1,pts2)  dst = cv2.warpAffine(img,M,(cols,rows))  plt.subplot(121),plt.imshow(img),plt.title('Input') plt.subplot(122),plt.imshow(dst),plt.title('Output') plt.show() 

            See the result:

            Affine Transformation

            Perspective Transformation

            For perspective transformation, you need a 3x3 transformation matrix. Straight lines will remain straight even after the transformation. To find this transformation matrix, you need 4 points on the input image and corresponding points on the output image. Among these 4 points, 3 of them should not be collinear. Then transformation matrix can be found by the function cv2.getPerspectiveTransform. Then apply cv2.warpPerspective with this 3x3 transformation matrix.

            See the code below:

            img = cv2.imread('sudokusmall.png') rows,cols,ch = img.shape  pts1 = np.float32([[56,65],[368,52],[28,387],[389,390]]) pts2 = np.float32([[0,0],[300,0],[0,300],[300,300]])  M = cv2.getPerspectiveTransform(pts1,pts2)  dst = cv2.warpPerspective(img,M,(300,300))  plt.subplot(121),plt.imshow(img),plt.title('Input') plt.subplot(122),plt.imshow(dst),plt.title('Output') plt.show() 

            Result:

            Perspective Transformation

            Additional Resources

            1. “Computer Vision: Algorithms and Applications”, Richard Szeliski

            Exercises

            Help and Feedback

            You did not find what you were looking for?
            • Ask a question on the Q&A forum.
            • If you think something is missing or wrong in the documentation, please file a bug report.

            posted on 2017-10-12 15:28 zmj 閱讀(723) 評論(0)  編輯 收藏 引用

            久久亚洲AV成人出白浆无码国产| 伊人久久大香线蕉av不变影院| 久久久久久国产精品无码超碰| 久久毛片一区二区| 久久亚洲色一区二区三区| 精品熟女少妇aⅴ免费久久| 久久午夜电影网| 国产精品99久久不卡| 国产精品va久久久久久久| 国产三级观看久久| 国内精品久久久久久久久电影网 | 亚州日韩精品专区久久久| 精品无码久久久久久久久久| 国产精品gz久久久| 久久久久亚洲AV无码专区桃色| 久久久久亚洲爆乳少妇无| 亚洲欧美日韩久久精品| 欧美国产成人久久精品| 亚洲AV无码1区2区久久| 97r久久精品国产99国产精| 精品久久一区二区三区| 亚洲国产精品久久久久| 久久精品国产黑森林| 欧美一级久久久久久久大片| 久久午夜福利无码1000合集| 久久综合给久久狠狠97色| 一本大道加勒比久久综合| 欧美午夜精品久久久久久浪潮| 久久精品久久久久观看99水蜜桃| 热re99久久精品国99热| 亚洲成人精品久久| 久久精品国产欧美日韩99热| 看久久久久久a级毛片| 国产精品免费看久久久香蕉| 久久久这里只有精品加勒比| 无码AV波多野结衣久久| 国产精品永久久久久久久久久| 久久中文字幕人妻熟av女| 欧美777精品久久久久网| 色欲综合久久躁天天躁| 99久久免费国产特黄|