青青草原综合久久大伊人导航_色综合久久天天综合_日日噜噜夜夜狠狠久久丁香五月_热久久这里只有精品

Shape Detection & Tracking using Contours

https://opencv-srf.blogspot.jp/2011/09/object-detection-tracking-using-contours.html
In the previous tutorial, we could detect and track an object using color separation. But we could not identify the shape of the object there. In this tutorial, let's see how to identify a shape and position of an object using contours with OpenCV.

Using contours with OpenCV, you can get a sequence of points of vertices of each white patch (White patches are considered as polygons). As example, you will get 3 points (vertices)  for a triangle, and 4 points for quadrilaterals. So, you can identify any polygon by the number of vertices of that polygon. You can even identify features of polygons such as convexity, concavity, equilateral and etc by calculating and comparing distances between vertices. 

Let's see how this can be done with OpenCV. All you need, is a binary image in which your objects should be white and the background should be black.

Binary Image


Now I am going to identify triangles and  quadrilaterals and heptagon in the above image using a C++ application with OpenCV.  I'll draw a line along the perimeter of every identified polygon with colors blue for triangle, green for quadrilaterals and red for heptagons. Here is the code.


///////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////



#include "stdafx.h"
#include <cv.h>
#include <highgui.h>
using namespace std;

int main()
{

IplImage* img =  cvLoadImage("C:/Users/SHERMAL/Desktop/FindingContours.png");

//show the original image
cvNamedWindow("Raw");
cvShowImage("Raw",img);

//converting the original image into grayscale
IplImage* imgGrayScale = cvCreateImage(cvGetSize(img), 8, 1); 
cvCvtColor(img,imgGrayScale,CV_BGR2GRAY);

//thresholding the grayscale image to get better results
cvThreshold(imgGrayScale,imgGrayScale,128,255,CV_THRESH_BINARY);  

CvSeq* contours;  //hold the pointer to a contour in the memory block
CvSeq* result;   //hold sequence of points of a contour
CvMemStorage *storage = cvCreateMemStorage(0); //storage area for all contours

//finding all contours in the image
cvFindContours(imgGrayScale, storage, &contours, sizeof(CvContour), CV_RETR_LIST, CV_CHAIN_APPROX_SIMPLE, cvPoint(0,0));

//iterating through each contour
while(contours)
{
//obtain a sequence of points of contour, pointed by the variable 'contour'
result = cvApproxPoly(contours, sizeof(CvContour), storage, CV_POLY_APPROX_DP, cvContourPerimeter(contours)*0.02, 0);
       
//if there are 3  vertices  in the contour(It should be a triangle)
if(result->total==3 )
{
//iterating through each point
CvPoint *pt[3];
for(int i=0;i<3;i++){
pt[i] = (CvPoint*)cvGetSeqElem(result, i);
}

//drawing lines around the triangle
cvLine(img, *pt[0], *pt[1], cvScalar(255,0,0),4);
cvLine(img, *pt[1], *pt[2], cvScalar(255,0,0),4);
cvLine(img, *pt[2], *pt[0], cvScalar(255,0,0),4);

}

//if there are 4 vertices in the contour(It should be a quadrilateral)
else if(result->total==4 )
{
//iterating through each point
CvPoint *pt[4];
for(int i=0;i<4;i++){
pt[i] = (CvPoint*)cvGetSeqElem(result, i);
}

//drawing lines around the quadrilateral
cvLine(img, *pt[0], *pt[1], cvScalar(0,255,0),4);
cvLine(img, *pt[1], *pt[2], cvScalar(0,255,0),4);
cvLine(img, *pt[2], *pt[3], cvScalar(0,255,0),4);
cvLine(img, *pt[3], *pt[0], cvScalar(0,255,0),4);
}

//if there are 7  vertices  in the contour(It should be a heptagon)
else if(result->total ==7  )
{
//iterating through each point
CvPoint *pt[7];
for(int i=0;i<7;i++){
pt[i] = (CvPoint*)cvGetSeqElem(result, i);
}

//drawing lines around the heptagon
cvLine(img, *pt[0], *pt[1], cvScalar(0,0,255),4);
cvLine(img, *pt[1], *pt[2], cvScalar(0,0,255),4);
cvLine(img, *pt[2], *pt[3], cvScalar(0,0,255),4);
cvLine(img, *pt[3], *pt[4], cvScalar(0,0,255),4);
cvLine(img, *pt[4], *pt[5], cvScalar(0,0,255),4);
cvLine(img, *pt[5], *pt[6], cvScalar(0,0,255),4);
cvLine(img, *pt[6], *pt[0], cvScalar(0,0,255),4);
}

//obtain the next contour
contours = contours->h_next;
}

//show the image in which identified shapes are marked   
cvNamedWindow("Tracked");
cvShowImage("Tracked",img);
   
cvWaitKey(0); //wait for a key press

//cleaning up
cvDestroyAllWindows(); 
cvReleaseMemStorage(&storage);
cvReleaseImage(&img);
cvReleaseImage(&imgGrayScale);

return 0;
}

/////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////// 
You can download this OpenCV visual c++ project from here(The downloaded file is a compressed .rar folder. So, you have to extract it using Winrar or other suitable software) 


White blobs with different shapes are detected using contours with OpenCV functions

As you can see, triangles are marked with blue, quadrilaterals are marked with green and heptagons are marked with red. So, now it is obvious that this method is capable of identifying shapes. 

Explanation

Here I have converted the original image in to gray scale. It is because this method works only with gray scale image with single channel. To get better results, I threshold the gray-scale image using 'cvThreshold' function. You can use your own way to threshold the image. Then I find all contours in the thresholded image and identify and track all triangles, quadrilaterals and heptagons.

Let's discuss new OpenCV functions, found in this application.



  • cvThreshold( const Mat& srcMat& dst, double threshVal, double max, int thresholdType )

applies a fix level threshold to the each element of 'src' array write a value to corresponding array element of 'dst'

Arguements -
  • const Mat& src - Source array (This should be single channel)
  • Mat& dst - Destination array which has the same size and same type as the 'src'
  • double threshVal - Threshold value
  • double max - Maximum value to use with 'THRESH_BINARY' and 'THRESH_BINARY_INV' which are thresholding types
  • int thresholdType - You can use one of the following for this arguement
    • THRESH_BINARY
                       dst(x,y)=max,             if src(x,y) > ThreshVal
                       dst(x,y)=0,                 if src(x,y) < ThreshVal
  • THRESH_BINARY_INV
                      dst(x,y)=0,                  if src(x,y) > ThreshVal
                      dst(x,y)=max,              if src(x,y) < ThreshVal
  • THRESH_TOZERO
                      dst(x,y)=src(x,y),       if src(x,y) > ThreshVal
                            dst(x,y)=0,                 if src(x,y) < ThreshVal
  • THRESH_TOZERO_INV
                      dst(x,y)=0,                  if src(x,y) > ThreshVal
                      dst(x,y)=src(x,y),        if src(x,y) < ThreshVal
    • THRESH_TRUNC
                      dst(x,y)=threshVal,    if src(x,y) > ThreshVal
                      dst(x,y)=src(x,y),        if src(x,y) < ThreshVal


In the above application, I have used 'THRESH_BINARY', because I want to assign 255 (white) where the objects are located and 0 (black) elsewhere.


  • cvCreateMemStorage(int byteSize)
Creates memory storage which has the capacity specified by the parameter 'byteSize'. But if byteSize=0, the allocated capacity is the default value(usually 64 Kb)


  • cvFindContours( CvArr* img, CvMemStorage* str, CvSeq** first_contour, int header_size, int mode, int method, CvPoint offset )
Find all contours in a binary image
Arguments - 
  • CvArr* img - Source image (This should be 8 bit single channel). All non-zero pixels are considered as 1 and all zero remain zero.
  • CvMemStorage* str - Memory blocks to store all obtained contours
  • CvSeq** first_contour - store a pointer to the first contour in the memory block, 'str'
  • int header_size - size of the sequence header
  • int mode - mode of retrieval of contours from the image
                You have to choose one of the following
    • CV_RETR_LIST - Retrieves all of the contours and put them in a list
    • CV_RETR_EXTERNAL - Retrieves only the extreme outer contours
    • CV_RETR_CCOMP - Retrieves all of the contours and organizes them into a two-level hierarchy: on the top level are the external boundaries of the components, on the second level are the boundaries of the holes
    • CV_RETR_TREE - Retrieves all of the contours and reconstructs the full hierarchy of nested contours

  • int method - Approximation method
                  You have to choose one of the following

    • CV_CHAIN_CODE - Outputs contours in the Freeman chain code
    • CV_CHAIN_APPROX_NONE - Translates all of the points from the chain code into points
    • CV_CHAIN_APPROX_SIMPLE - Compresses horizontal, vertical, and diagonal segments and leaves only their end points
    • CV_CHAIN_APPROX_TC89_L1,CV_CHAIN_APPROX_TC89_KCOS - Applies one of the flavors of the Teh-Chin chain approximation algorithm.
    • CV_LINK_RUNS - uses a completely different contour retrieval algorithm by linking horizontal segments of 1’s. Only the 'CV_RETR_LIST' retrieval mode can be used with this method.
  • CvPoint offset - Offset by which every contour point should be shifted. This is useful when we have set ROI (Region Of Interest) in the image. Normally we set the offset to 'cvPoint(0,0)'

  • cvApproxPoly( const void* src, int header_size, CvMemStorage* storage, int method, double para1, int para2 )
Approximate polygonal curves with specified precision

arguments - 
  • const void* src - Sequence of points
  • int header_size -  size of the sequence header
  • CvMemStorage* storage - memory block that contains all contours
  • int method - Approximation method. (The only method, available to use for this argument is 'CV_POLY_APPROX_DP')
  • double para1 - approximation accuracy
  • int para2 - Determines whether the single sequence should be approximated or all sequences in the same level or below 

  • cvGetSeqElem( const CvSeq* seq, int index )
Returns a pointer to the element of 'seq' at 'index'

  • cvReleaseMemStorage( CvMemStorage** storage )
Deallocate memory blocks which have been allocated by 'cvCreateMemStorage()' function




Real World Example


The above example is not really useful in practical situation. Usually, there are lots of noises in an image such as irregular lighting, shadows, camera irregularities and etc. So, above application as it is, cannot be used to identify shapes in a real image. It should be modified to cope with these noises. And images usually have 3 channels (BGR color). So, it should be converted into grey-scale which has only one channel. 

Here is a real world image of an arena of a robot soccer, taken from a camera.

Robot Arena

Here, we are going to detect and mark the perimeter of each triangle in the image with a blue line. Let's see the modified OpenCV c++ application which accomplish the above task.

///////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////

#include "stdafx.h"
#include <cv.h>
#include <highgui.h>
using namespace std;

int main()
{

IplImage* img =  cvLoadImage("C:/Users/SHERMAL/Desktop/DetectingContours.jpg");

//show the original image
cvNamedWindow("Original");
cvShowImage("Original",img);

 //smooth the original image using Gaussian kernel to remove noise
cvSmooth(imgimg, CV_GAUSSIAN,3,3);

//converting the original image into grayscale
IplImage* imgGrayScale = cvCreateImage(cvGetSize(img), 8, 1); 
cvCvtColor(img,imgGrayScale,CV_BGR2GRAY);

cvNamedWindow("GrayScale Image");
cvShowImage("GrayScale Image",imgGrayScale);

//thresholding the grayscale image to get better results
cvThreshold(imgGrayScale,imgGrayScale,100,255,CV_THRESH_BINARY_INV);

cvNamedWindow("Thresholded Image");
cvShowImage("Thresholded Image",imgGrayScale);

CvSeq* contour;  //hold the pointer to a contour
CvSeq* result;   //hold sequence of points of a contour
CvMemStorage *storage = cvCreateMemStorage(0); //storage area for all contours

//finding all contours in the image
cvFindContours(imgGrayScale, storage, &contour, sizeof(CvContour), CV_RETR_LIST, CV_CHAIN_APPROX_SIMPLE, cvPoint(0,0));

//iterating through each contour
while(contour)
{
//obtain a sequence of points of the countour, pointed by the variable 'countour'
result = cvApproxPoly(contour, sizeof(CvContour), storage, CV_POLY_APPROX_DP, cvContourPerimeter(contour)*0.02, 0);
       
//if there are 3 vertices  in the contour and the area of the triangle is more than 100 pixels
if(result->total==3 && fabs(cvContourArea(result, CV_WHOLE_SEQ))>100 )
{
//iterating through each point
CvPoint *pt[3];
for(int i=0;i<3;i++){
pt[i] = (CvPoint*)cvGetSeqElem(result, i);
}

//drawing lines around the triangle
cvLine(img, *pt[0], *pt[1], cvScalar(255,0,0),4);
cvLine(img, *pt[1], *pt[2], cvScalar(255,0,0),4);
cvLine(img, *pt[2], *pt[0], cvScalar(255,0,0),4);

}

//obtain the next contour
contour = contour->h_next;
}

//show the image in which identified shapes are marked   
cvNamedWindow("Tracked");
cvShowImage("Tracked",img);
   
cvWaitKey(0); //wait for a key press

//cleaning up
cvDestroyAllWindows(); 
cvReleaseMemStorage(&storage);
cvReleaseImage(&img);
cvReleaseImage(&imgGrayScale);

return 0;
}


/////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////// 
You can download this OpenCV visual c++ project from here(The downloaded file is a compressed .rar folder. So, you have to extract it using Winrar or other suitable software)


converted to gray scale Image with OpenCV cvCvtColor function
Gray scale Image

Thresholded the image using OpenCV cvThreshold function
Thresholded Image

Triangles Detected with OpenCV using contours with 3 vertices
Triangles Detected


In the same way, any shapes with any sizes can be detected with OpenCV.


Explanation

To reduce the noise level of the original image, I have smoothed the original image with a Gaussian kernel. 
Further you can change the 5th argument of cvApproxPoly() function to cope with the noise. In the above example, I have used cvContourPerimeter(contour)*0.02 as the 5th argument of cvApproxPoly(). You can try cvContourPerimeter(contour)*0.01 or cvContourPerimeter(contour)*0.04 or any other value and see the difference of the output yourselves.
Still there may be very small triangles, formed due to the noise. Therefore all triangles with areas less than 100 pixels are filtered out. 

Here are the new OpenCV functions, found in the above example.
  • cvContourArea(const CvArr* contour, CvSlice slice)
Calculate the area enclosed by sequence of contour points. 
  • const CvArr* contour - array of vertices of the contour
  • CvSlice slice - starting and ending point of the contour. 'CV_WHOLE_SEQ' will take the whole contour to calculate the area
The orientation of contour affects the area sign. So, this function may return a negative value. So, it should be used fabs() function to get the absolute value.

  • fabs(double x)

This function returns the absolute value of any floating point number. ( This is a C function, not a OpenCV function)


Tracking two Triangles in a Video


Here I am going to track the two triangles in a video. The blue triangle is marked with red and the green triangle is marked with blue. 

///////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////
#include "stdafx.h"
#include <cv.h>
#include <highgui.h>
using namespace std;

IplImage* imgTracking=0;

int lastX1 = -1;
int lastY1 = -1;

int lastX2 = -1;
int lastY2 = -1;

void trackObject(IplImage* imgThresh){
CvSeq* contour;  //hold the pointer to a contour
CvSeq* result;     //hold sequence of points of a contour
CvMemStorage *storage = cvCreateMemStorage(0); //storage area for all contours

//finding all contours in the image
cvFindContours(imgThresh, storage, &contour, sizeof(CvContour), CV_RETR_LIST, CV_CHAIN_APPROX_SIMPLE, cvPoint(0,0));

//iterating through each contour
while(contour)
{
//obtain a sequence of points of the countour, pointed by the variable 'countour'
result = cvApproxPoly(contour, sizeof(CvContour), storage, CV_POLY_APPROX_DP, cvContourPerimeter(contour)*0.02, 0);
       
//if there are 3 vertices  in the contour and the area of the triangle is more than 100 pixels
if(result->total==3 && fabs(cvContourArea(result, CV_WHOLE_SEQ))>100 )
{
//iterating through each point
CvPoint *pt[3];
for(int i=0;i<3;i++){
pt[i] = (CvPoint*)cvGetSeqElem(result, i);
}

int posX=( pt[0]->x + pt[1]->x + pt[2]->x )/3;
int posY=( pt[0]->y + pt[1]->y + pt[2]->y )/3;

if(posX > 360 ){
if(lastX1>=0 && lastY1>=0 && posX>=0 && posY>=0){
// Draw a red line from the previous point to the current point
cvLine(imgTracking, cvPoint(posX, posY), cvPoint(lastX1, lastY1), cvScalar(0,0,255), 4);
}

lastX1 = posX;
lastY1 = posY;
}
else{
if(lastX2>=0 && lastY2>=0 && posX>=0 && posY>=0){
// Draw a blue line from the previous point to the current point
cvLine(imgTracking, cvPoint(posX, posY), cvPoint(lastX2, lastY2), cvScalar(255,0,0), 4);
}

lastX2 = posX;
lastY2 = posY;
}
}

//obtain the next contour
contour = contour->h_next;
}

cvReleaseMemStorage(&storage);
}


int main(){
    //load the video file to the memory
CvCapture *capture =     cvCaptureFromAVI("E:/Projects/Robot/IESL Robot/robot/a.avi");

    if(!capture){
        printf("Capture failure\n");
        return -1;
    }
      
    IplImage* frame=0;
    frame = cvQueryFrame(capture);           
    if(!frame) return -1;
   
    //create a blank image and assigned to 'imgTracking' which has the same size of original video
    imgTracking=cvCreateImage(cvGetSize(frame),IPL_DEPTH_8U, 3);
    cvZero(imgTracking); //covert the image, 'imgTracking' to black

    cvNamedWindow("Video");     

//iterate through each frames of the video     
    while(true){

        frame = cvQueryFrame(capture);           
        if(!frame) break;
        frame=cvCloneImage(frame); 
         
//smooth the original image using Gaussian kernel
        cvSmooth(frame, frame, CV_GAUSSIAN,3,3); 

//converting the original image into grayscale
IplImage* imgGrayScale = cvCreateImage(cvGetSize(frame), 8, 1); 
cvCvtColor(frame,imgGrayScale,CV_BGR2GRAY);
          
       //thresholding the grayscale image to get better results
cvThreshold(imgGrayScale,imgGrayScale,100,255,CV_THRESH_BINARY_INV);
            
        //track the possition of the ball
        trackObject(imgGrayScale);

        // Add the tracking image and the frame
        cvAdd(frame, imgTracking, frame);
             
        cvShowImage("Video", frame);
   
        //Clean up used images
        cvReleaseImage(&imgGrayScale);            
        cvReleaseImage(&frame);

        //Wait 10mS
        int c = cvWaitKey(10);
        //If 'ESC' is pressed, break the loop
        if((char)c==27 ) break;      
    }

    cvDestroyAllWindows();
    cvReleaseImage(&imgTracking);
    cvReleaseCapture(&capture);     

    return 0;
}
///////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////
You can download this OpenCV visual c++ project from here(The downloaded file is a compressed .rar folder. So, you have to extract it using Winrar or other suitable software)


Explanation

You already know how to obtain 3 vertices of a triangle with OpenCV. Averaging those 3 vertices gives you the center point of the triangle. So, it is easy to track triangles in a video.
Then, how do you identify two similar triangles separately? Here I have used a simple trick. I know that the green triangle always is in the left side of the video and the blue triangle is in the right side of the video. So, if the x coordinate of a triangle is more than (frame width)/2 = 360, then it is the blue triangle, otherwise it is the green triangle. 

Next Tutorial : 

posted on 2017-09-14 16:44 zmj 閱讀(955) 評論(0)  編輯 收藏 引用


只有注冊用戶登錄后才能發表評論。
網站導航: 博客園   IT新聞   BlogJava   博問   Chat2DB   管理


青青草原综合久久大伊人导航_色综合久久天天综合_日日噜噜夜夜狠狠久久丁香五月_热久久这里只有精品
  • <ins id="pjuwb"></ins>
    <blockquote id="pjuwb"><pre id="pjuwb"></pre></blockquote>
    <noscript id="pjuwb"></noscript>
          <sup id="pjuwb"><pre id="pjuwb"></pre></sup>
            <dd id="pjuwb"></dd>
            <abbr id="pjuwb"></abbr>
            一区二区激情视频| 国产麻豆视频精品| 久久精品伊人| 欧美色精品天天在线观看视频| 久久嫩草精品久久久精品一| 欧美激情一区二区三区蜜桃视频| 久久综合九色欧美综合狠狠| 国产精品视频内| 一本色道久久精品| 99国产精品视频免费观看一公开 | 亚洲天堂久久| 99国产精品国产精品毛片| 久久影音先锋| 久久夜精品va视频免费观看| 国产精品亚洲成人| 一区二区三区四区五区精品| 日韩一级二级三级| 欧美a级一区二区| 美女精品自拍一二三四| 国内精品视频在线播放| 欧美影院在线| 久久久久久综合| 国产亚洲一本大道中文在线| 欧美一级视频精品观看| 欧美激情免费在线| 亚洲高清不卡av| 亚洲人体1000| 欧美激情成人在线| 亚洲欧洲另类国产综合| 亚洲精品一区二区三| 一区二区三区波多野结衣在线观看| 亚洲精品一区二区在线观看| 欧美激情视频免费观看| 亚洲精品国产精品国自产观看浪潮 | 葵司免费一区二区三区四区五区| 欧美va亚洲va香蕉在线| 亚洲国产色一区| 欧美激情欧美狂野欧美精品| 99国产精品视频免费观看| 亚洲综合首页| 国产亚洲成人一区| 久久综合色天天久久综合图片| 欧美99在线视频观看| 亚洲人线精品午夜| 欧美日韩亚洲综合| 亚洲制服丝袜在线| 美女诱惑黄网站一区| 亚洲精品一品区二品区三品区| 欧美另类高清视频在线| 亚洲视频在线观看| 久久亚洲国产精品日日av夜夜| 亚洲国产精品精华液2区45| 亚洲欧美日韩精品久久久久| 久久久久久久久伊人| 最新成人av在线| 国产精品国产成人国产三级| 欧美一区二区视频在线观看2020 | 亚洲国产精品va在看黑人| 亚洲一区二区毛片| 加勒比av一区二区| 欧美精品国产一区| 性视频1819p久久| 亚洲国产日韩欧美在线图片| 亚洲综合大片69999| 精品96久久久久久中文字幕无| 欧美精品三区| 久久精品欧洲| 日韩一级片网址| 美女成人午夜| 午夜久久99| 亚洲免费观看| 国产在线视频欧美| 欧美日韩1区| 久久久久九九九| 亚洲欧美偷拍卡通变态| 亚洲第一福利在线观看| 久久精品国产久精国产思思| 亚洲麻豆国产自偷在线| 国语自产精品视频在线看抢先版结局 | 亚洲人www| 国产精品一区毛片| 欧美日本中文| 噜噜噜在线观看免费视频日韩| 中文久久乱码一区二区| 亚洲国产欧美在线人成| 鲁大师成人一区二区三区| 亚洲欧美综合精品久久成人| 亚洲精品在线视频| 亚洲国产成人久久| 国产在线观看一区| 国产精品日韩欧美一区二区| 欧美精品麻豆| 欧美成人第一页| 久久免费高清| 久久久久久夜精品精品免费| 欧美一二三视频| 亚洲天堂成人在线视频| 日韩亚洲欧美综合| 99热免费精品在线观看| 亚洲欧洲三级电影| 91久久久亚洲精品| 亚洲高清二区| 亚洲福利视频网站| 欧美激情在线免费观看| 久久综合狠狠综合久久综青草| 久久成人综合网| 欧美亚洲专区| 欧美一区成人| 欧美一区激情| 久久精品国产久精国产一老狼| 亚洲免费视频观看| 性色av一区二区三区在线观看| 亚洲尤物精选| 亚洲欧美日韩在线高清直播| 亚洲欧美中文日韩在线| 午夜视频一区二区| 欧美一区二区三区四区在线观看| 欧美一区二区免费观在线| 性高湖久久久久久久久| 欧美一级久久久| 久久精品免费播放| 久热精品视频在线观看| 免费国产一区二区| 欧美激情一区二区三区蜜桃视频| 亚洲福利视频一区二区| 99精品国产高清一区二区 | 欧美一级久久久| 久久国产99| 欧美久久九九| 国产精品网站在线播放| 国内精品一区二区三区| 亚洲日本精品国产第一区| 一区二区三区视频在线看| 欧美一区二区日韩| 免费亚洲电影| avtt综合网| 久久精品伊人| 欧美裸体一区二区三区| 国产精品一页| 亚洲经典视频在线观看| 一区二区三区欧美在线观看| 欧美在线观看视频在线| 免费亚洲一区| 亚洲午夜久久久久久尤物 | 一本色道精品久久一区二区三区| 欧美亚洲日本国产| 欧美激情中文不卡| 亚洲影院高清在线| 免费久久精品视频| 国产精品久久久久久久久久免费 | 亚洲欧美日韩在线一区| 久久这里只有精品视频首页| 欧美日韩一区精品| 亚洲风情亚aⅴ在线发布| 亚洲私拍自拍| 免费人成精品欧美精品| 亚洲欧美另类在线观看| 欧美激情一区二区三区在线| 国产区精品在线观看| 亚洲伦理精品| 久久影视精品| 亚洲淫性视频| 欧美日韩在线直播| 亚洲三级色网| 久久精品夜色噜噜亚洲a∨ | 国产日韩欧美成人| 99精品欧美一区二区蜜桃免费| 久久激情视频久久| 亚洲最新中文字幕| 欧美精品日韩| 亚洲欧洲精品一区二区三区| 久久久欧美一区二区| 亚洲图中文字幕| 欧美精品在线观看一区二区| 激情成人中文字幕| 久久精品九九| 中文日韩欧美| 欧美天天视频| 亚洲一区二区精品在线| 亚洲人成在线影院| 欧美成人精品一区二区三区| 精品91视频| 久久―日本道色综合久久| 亚洲免费中文字幕| 国产九九视频一区二区三区| 亚洲一区在线播放| 中文一区字幕| 国产精品一区在线观看| 亚洲欧美日韩区| 亚洲一区二区精品| 国产精品视频区| 欧美在现视频| 欧美淫片网站| 在线看国产一区| 免费亚洲一区| 麻豆成人精品| 一区二区三区精品久久久| 亚洲精品综合精品自拍| 亚洲欧美日韩视频二区| 国产精品一区二区久久|