• <ins id="pjuwb"></ins>
    <blockquote id="pjuwb"><pre id="pjuwb"></pre></blockquote>
    <noscript id="pjuwb"></noscript>
          <sup id="pjuwb"><pre id="pjuwb"></pre></sup>
            <dd id="pjuwb"></dd>
            <abbr id="pjuwb"></abbr>

            Detect red circles in an image using OpenCV

            https://solarianprogrammer.com/2015/05/08/detect-red-circles-image-using-opencv/

            The code for this post is on GitHub: https://github.com/sol-prog/OpenCV-red-circle-detection.

            A few days ago someone asked me, in an email, if it is possible to detect all red circles in an image that contains circles and rectangles of various colors. I thought this problem could be of certain interest to the readers of this blog, hence the present article.

            From the many possible approaches to the problem of red circles detection, two seem straightforward:

            • Detect all circles from the input image and keep only the ones that are filled with red.
            • Threshold the input image in order to keep only the red pixels, search for circles in the result.

            I found the second approach to be slightly better than the first one (less false positives), so I am going to present it in this post.

            I will use the OpenCV library and C++, but you can easily follow along with any of the other OpenCV bindings (C, Python, Java).

            Lets start by thresholding the input image for anything that is not red. Instead of the usual RGB color space we are going to use the HSV space, which has the desirable property that allows us to identify a particular color using a single value, the hue, instead of three values. As a side note, in OpenCV H has values from 0 to 180, S and V from 0 to 255. The red color, in OpenCV, has the hue values approximately in the range of 0 to 10 and 160 to 180.

            Next piece of code converts a color image from BGR (internally, OpenCV stores a color image in the BGR format rather than RGB) to HSV and thresholds the HSV image for anything that is not red:

             1 	...  2 	// Convert input image to HSV  3 	cv::Mat hsv_image;  4 	cv::cvtColor(bgr_image, hsv_image, cv::COLOR_BGR2HSV);  5   6 	// Threshold the HSV image, keep only the red pixels  7 	cv::Mat lower_red_hue_range;  8 	cv::Mat upper_red_hue_range;  9 	cv::inRange(hsv_image, cv::Scalar(0, 100, 100), cv::Scalar(10, 255, 255), lower_red_hue_range); 10 	cv::inRange(hsv_image, cv::Scalar(160, 100, 100), cv::Scalar(179, 255, 255), upper_red_hue_range); 11 	... 

            Take the next input image as an example:

            Five colored circles

            if we use the above piece of code, this is what we get:

            Lower red hue range

            Upper red hue range

            As you can see, the first threshold image captured the big red circle from the input image, while the second threshold image has captured the smaller red circle. Typically, you won’t see such a clear separation between the two red ranges. I’ve slightly cheated when I filled the circles in GIMP and used hue values from both intervals, in order to show you that a similar situation can arrive in practice.

            Next step is to combine the above threshold images and slightly blur the result, in order to avoid false positives:

            1 	... 2 	// Combine the above two images 3 	cv::Mat red_hue_image; 4 	cv::addWeighted(lower_red_hue_range, 1.0, upper_red_hue_range, 1.0, 0.0, red_hue_image); 5  6 	cv::GaussianBlur(red_hue_image, red_hue_image, cv::Size(9, 9), 2, 2); 7 	... 

            Combined red hue range

            Once we have the threshold image that contains only the red pixels from the original image, we can use the circle Hough Transform to detect the circles. In OpenCV this is implemented as HoughCircles:

            1 	... 2 	// Use the Hough transform to detect circles in the combined threshold image 3 	std::vector<cv::Vec3f> circles; 4 	cv::HoughCircles(red_hue_image, circles, CV_HOUGH_GRADIENT, 1, red_hue_image.rows/8, 100, 20, 0, 0); 5 	... 

            As a side note, parameters 6 and 7 from the HoughCircles must be usually tuned from case to case in order to detect circles. All found circles are stored in the circles vector from the above piece of code, using this information we can outline the detected circles on the original image:

            1 	// Loop over all detected circles and outline them on the original image 2 	if(circles.size() == 0) std::exit(-1); 3 	for(size_t current_circle = 0; current_circle < circles.size(); ++current_circle) { 4 		cv::Point center(std::round(circles[current_circle][0]), std::round(circles[current_circle][1])); 5 		int radius = std::round(circles[current_circle][2]); 6  7 		cv::circle(orig_image, center, radius, cv::Scalar(0, 255, 0), 5); 8 	} 

            Outline of the detected circles

            Lets try the code on a slightly more complex image:

            Circles and rectangles input image

            and the result:

            Circles and rectangles detected red circles

            Adding some noise to the same input image as above:

            Circles and rectangles input image with noise

            and the incredible result:

            Circles and rectangles with noise detected red circles

            Ouch! Apparently the noise from the input image fooled the Hough detector and now we have more circles than we’ve expected. A simple cure is to filter the input image before the BGR to HSV conversion, for this kind of noise usually a median filter works best:

            1 	... 2 	cv::medianBlur(bgr_image, bgr_image, 3); 3  4 	// Convert input image to HSV 5 	cv::Mat hsv_image; 6 	cv::cvtColor(bgr_image, hsv_image, cv::COLOR_BGR2HSV); 7 	... 

            and now the result is much improved:

            Circles and rectangles with noise median filter detected red circles

            posted on 2017-08-29 10:52 zmj 閱讀(615) 評論(0)  編輯 收藏 引用

            久久99九九国产免费看小说| 伊人久久精品无码二区麻豆| 久久国产精品77777| 青青国产成人久久91网 | 国产婷婷成人久久Av免费高清| 久久久久久亚洲Av无码精品专口| 亚洲人成精品久久久久 | 精品一久久香蕉国产线看播放| 久久精品国产WWW456C0M| 久久WWW免费人成一看片| 久久久久久久97| 亚洲AⅤ优女AV综合久久久| 亚洲精品国产成人99久久| 久久中文字幕人妻熟av女| 无码国产69精品久久久久网站| 国产午夜免费高清久久影院| 欧美牲交A欧牲交aⅴ久久| 国产精品久久久久9999| 一本大道久久东京热无码AV| 国产精品成人无码久久久久久| 久久精品国产亚洲av高清漫画| 国产精品九九久久免费视频 | 久久精品国产日本波多野结衣| 久久r热这里有精品视频| 久久精品国产久精国产思思| 久久伊人五月天论坛| 久久精品国产黑森林| 国内精品久久人妻互换| 久久久久久国产a免费观看黄色大片| 一本一道久久精品综合| 久久久久99这里有精品10| 久久婷婷国产麻豆91天堂| 国内精品综合久久久40p| 久久精品国产72国产精福利| 国产成人99久久亚洲综合精品 | 国产精品免费福利久久| 久久久久久久精品成人热色戒| 亚洲精品国产第一综合99久久| 久久国产精品国语对白| 久久国产精品免费一区二区三区| 一本久久a久久精品综合夜夜|