• <ins id="pjuwb"></ins>
    <blockquote id="pjuwb"><pre id="pjuwb"></pre></blockquote>
    <noscript id="pjuwb"></noscript>
          <sup id="pjuwb"><pre id="pjuwb"></pre></sup>
            <dd id="pjuwb"></dd>
            <abbr id="pjuwb"></abbr>

            Detect red circles in an image using OpenCV

            https://solarianprogrammer.com/2015/05/08/detect-red-circles-image-using-opencv/

            The code for this post is on GitHub: https://github.com/sol-prog/OpenCV-red-circle-detection.

            A few days ago someone asked me, in an email, if it is possible to detect all red circles in an image that contains circles and rectangles of various colors. I thought this problem could be of certain interest to the readers of this blog, hence the present article.

            From the many possible approaches to the problem of red circles detection, two seem straightforward:

            • Detect all circles from the input image and keep only the ones that are filled with red.
            • Threshold the input image in order to keep only the red pixels, search for circles in the result.

            I found the second approach to be slightly better than the first one (less false positives), so I am going to present it in this post.

            I will use the OpenCV library and C++, but you can easily follow along with any of the other OpenCV bindings (C, Python, Java).

            Lets start by thresholding the input image for anything that is not red. Instead of the usual RGB color space we are going to use the HSV space, which has the desirable property that allows us to identify a particular color using a single value, the hue, instead of three values. As a side note, in OpenCV H has values from 0 to 180, S and V from 0 to 255. The red color, in OpenCV, has the hue values approximately in the range of 0 to 10 and 160 to 180.

            Next piece of code converts a color image from BGR (internally, OpenCV stores a color image in the BGR format rather than RGB) to HSV and thresholds the HSV image for anything that is not red:

             1 	...  2 	// Convert input image to HSV  3 	cv::Mat hsv_image;  4 	cv::cvtColor(bgr_image, hsv_image, cv::COLOR_BGR2HSV);  5   6 	// Threshold the HSV image, keep only the red pixels  7 	cv::Mat lower_red_hue_range;  8 	cv::Mat upper_red_hue_range;  9 	cv::inRange(hsv_image, cv::Scalar(0, 100, 100), cv::Scalar(10, 255, 255), lower_red_hue_range); 10 	cv::inRange(hsv_image, cv::Scalar(160, 100, 100), cv::Scalar(179, 255, 255), upper_red_hue_range); 11 	... 

            Take the next input image as an example:

            Five colored circles

            if we use the above piece of code, this is what we get:

            Lower red hue range

            Upper red hue range

            As you can see, the first threshold image captured the big red circle from the input image, while the second threshold image has captured the smaller red circle. Typically, you won’t see such a clear separation between the two red ranges. I’ve slightly cheated when I filled the circles in GIMP and used hue values from both intervals, in order to show you that a similar situation can arrive in practice.

            Next step is to combine the above threshold images and slightly blur the result, in order to avoid false positives:

            1 	... 2 	// Combine the above two images 3 	cv::Mat red_hue_image; 4 	cv::addWeighted(lower_red_hue_range, 1.0, upper_red_hue_range, 1.0, 0.0, red_hue_image); 5  6 	cv::GaussianBlur(red_hue_image, red_hue_image, cv::Size(9, 9), 2, 2); 7 	... 

            Combined red hue range

            Once we have the threshold image that contains only the red pixels from the original image, we can use the circle Hough Transform to detect the circles. In OpenCV this is implemented as HoughCircles:

            1 	... 2 	// Use the Hough transform to detect circles in the combined threshold image 3 	std::vector<cv::Vec3f> circles; 4 	cv::HoughCircles(red_hue_image, circles, CV_HOUGH_GRADIENT, 1, red_hue_image.rows/8, 100, 20, 0, 0); 5 	... 

            As a side note, parameters 6 and 7 from the HoughCircles must be usually tuned from case to case in order to detect circles. All found circles are stored in the circles vector from the above piece of code, using this information we can outline the detected circles on the original image:

            1 	// Loop over all detected circles and outline them on the original image 2 	if(circles.size() == 0) std::exit(-1); 3 	for(size_t current_circle = 0; current_circle < circles.size(); ++current_circle) { 4 		cv::Point center(std::round(circles[current_circle][0]), std::round(circles[current_circle][1])); 5 		int radius = std::round(circles[current_circle][2]); 6  7 		cv::circle(orig_image, center, radius, cv::Scalar(0, 255, 0), 5); 8 	} 

            Outline of the detected circles

            Lets try the code on a slightly more complex image:

            Circles and rectangles input image

            and the result:

            Circles and rectangles detected red circles

            Adding some noise to the same input image as above:

            Circles and rectangles input image with noise

            and the incredible result:

            Circles and rectangles with noise detected red circles

            Ouch! Apparently the noise from the input image fooled the Hough detector and now we have more circles than we’ve expected. A simple cure is to filter the input image before the BGR to HSV conversion, for this kind of noise usually a median filter works best:

            1 	... 2 	cv::medianBlur(bgr_image, bgr_image, 3); 3  4 	// Convert input image to HSV 5 	cv::Mat hsv_image; 6 	cv::cvtColor(bgr_image, hsv_image, cv::COLOR_BGR2HSV); 7 	... 

            and now the result is much improved:

            Circles and rectangles with noise median filter detected red circles

            posted on 2017-08-29 10:52 zmj 閱讀(620) 評論(0)  編輯 收藏 引用

            7777久久久国产精品消防器材| 色综合合久久天天综合绕视看 | 久久婷婷五月综合成人D啪 | 91久久九九无码成人网站| 久久综合色之久久综合| 人妻精品久久无码区| 久久久噜噜噜久久中文字幕色伊伊| 一本综合久久国产二区| 久久中文骚妇内射| 久久99精品久久久久久齐齐| 亚洲精品无码专区久久久| 精品人妻伦九区久久AAA片69 | 亚洲国产成人精品久久久国产成人一区二区三区综 | 国产亚洲成人久久| 久久精品国产亚洲AV无码偷窥 | 久久综合香蕉国产蜜臀AV| 久久人人爽人人澡人人高潮AV| 国产精品久久久久影视不卡| 色综合久久综合中文综合网| 久久夜色撩人精品国产小说| 久久精品国产亚洲综合色| 狠狠88综合久久久久综合网 | 免费精品久久久久久中文字幕| 国产精品视频久久久| 久久99国内精品自在现线| 浪潮AV色综合久久天堂| 久久天天躁狠狠躁夜夜不卡| 亚洲国产成人精品女人久久久 | 欧美国产成人久久精品| 色偷偷91久久综合噜噜噜噜| 久久婷婷色综合一区二区| 久久九九免费高清视频| 色婷婷久久久SWAG精品| 7777精品伊人久久久大香线蕉 | 国内精品久久人妻互换| 久久不见久久见免费视频7| 99久久这里只有精品| 狠狠色伊人久久精品综合网 | 久久精品国产男包| 色欲久久久天天天综合网精品 | 久久久免费观成人影院|