青青草原综合久久大伊人导航_色综合久久天天综合_日日噜噜夜夜狠狠久久丁香五月_热久久这里只有精品

Point in triangle test

LINK: http://www.blackpawn.com/texts/pointinpoly/default.html

Same Side Technique

A common way to check if a point is in a triangle is to find the vectors connecting the point to each of the triangle's three vertices and sum the angles between those vectors. If the sum of the angles is 2*pi then the point is inside the triangle, otherwise it is not. It works, but it is very slow. This text explains a faster and much easier method.

First off, forgive the nasty coloring. I'm really sorry about it. Honest.

Okay, A B C forms a triangle and all the points inside it are yellow. Lines AB, BC, and CA each split space in half and one of those halves is entirely outside the triangle. This is what we'll take advantage of.

For a point to be inside the traingle A B C it must be below AB and left of BC and right of AC. If any one of these tests fails we can return early.

But, how do we tell if a point is on the correct side of a line? I'm glad you asked.


If you take the cross product of [B-A] and [p-A], you'll get a vector pointing out of the screen. On the other hand, if you take the cross product of [B-A] and [p'-A] you'll get a vector pointing into the screen. Ah ha! In fact if you cross [B-A] with the vector from A to any point above the line AB, the resulting vector points out of the screen while using any point below AB yields a vector pointing into the screen. So all we need to do to distinguish which side of a line a point lies on is take a cross product.

The only question remaining is: how do we know what direction the cross product should point in? Because the triangle can be oriented in any way in 3d-space, there isn't some set value we can compare with. Instead what we need is a reference point - a point that we know is on a certain side of the line. For our triangle, this is just the third point C.

So, any point p where [B-A] cross [p-A] does not point in the same direction as [B-A] cross [C-A] isn't inside the triangle. If the cross products do point in the same direction, then we need to test p with the other lines as well. If the point was on the same side of AB as C and is also on the same side of BC as A and on the same side of CA as B, then it is in the triangle.

Implementing this is a breeze. We'll make a function that tells us if two points are on the same side of a line and have the actual point-in-triangle function call this for each edge.

function SameSide(p1,p2, a,b)
            cp1 = CrossProduct(b-a, p1-a)
            cp2 = CrossProduct(b-a, p2-a)
            if DotProduct(cp1, cp2) >= 0 then return true
            else return false
            function PointInTriangle(p, a,b,c)
            if SameSide(p,a, b,c) and SameSide(p,b, a,c)
            and SameSide(p,c, a,b) then return true
            else return false
            

It's simple, effective and has no square roots, arc cosines, or strange projection axis determination nastiness.



Barycentric Technique

The advantage of the method above is that it's very simple to understand so that once you read it you should be able to remember it forever and code it up at any time without having to refer back to anything. It's just - hey the point has to be on the same side of each line as the triangle point that's not in the line. Cake.

Well, there's another method that is also as easy conceptually but executes faster. The downside is there's a little more math involved, but once you see it worked out it should be no problem.

So remember that the three points of the triangle define a plane in space. Pick one of the points and we can consider all other locations on the plane as relative to that point. Let's go with A -- it'll be our origin on the plane. Now what we need are basis vectors so we can give coordinate values to all the locations on the plane. We'll pick the two edges of the triangle that touch A, (C - A) and (B - A). Now we can get to any point on the plane just by starting at A and walking some distance along (C - A) and then from there walking some more in the direction (B - A).

With that in mind we can now describe any point on the plane as

    P = A + u * (C - A) + v * (B - A)

Notice now that if u or v < 0 then we've walked in the wrong direction and must be outside the triangle. Also if u or v > 1 then we've walked too far in a direction and are outside the triangle. Finally if u + v > 1 then we've crossed the edge BC again leaving the triangle.

Given u and v we can easily calculate the point P with the above equation, but how can we go in the reverse direction and calculate u and v from a given point P? Time for some math!

    P = A + u * (C - A) + v * (B - A)       // Original equation
(P - A) = u * (C - A) + v * (B - A)     // Subtract A from both sides
v2 = u * v0 + v * v1                    // Substitute v0, v1, v2 for less writing
// We have two unknowns (u and v) so we need two equations to solve
// for them.  Dot both sides by v0 to get one and dot both sides by
// v1 to get a second.
(v2) . v0 = (u * v0 + v * v1) . v0
(v2) . v1 = (u * v0 + v * v1) . v1
// Distribute v0 and v1
v2 . v0 = u * (v0 . v0) + v * (v1 . v0)
v2 . v1 = u * (v0 . v1) + v * (v1 . v1)
// Now we have two equations and two unknowns and can solve one
// equation for one variable and substitute into the other.  Or
// if you're lazy like me, fire up Mathematica and save yourself
// some handwriting.
Solve[v2.v0 == {u(v0.v0) + v(v1.v0), v2.v1 == u(v0.v1) + v(v1.v1)}, {u, v}]
u = ((v1.v1)(v2.v0)-(v1.v0)(v2.v1)) / ((v0.v0)(v1.v1) - (v0.v1)(v1.v0))
v = ((v0.v0)(v2.v1)-(v0.v1)(v2.v0)) / ((v0.v0)(v1.v1) - (v0.v1)(v1.v0))

Here's an implementation in Flash that you can play with. :)

// Compute vectors
                v0 = C - A
                v1 = B - A
                v2 = P - A
                // Compute dot products
                dot00 = dot(v0, v0)
                dot01 = dot(v0, v1)
                dot02 = dot(v0, v2)
                dot11 = dot(v1, v1)
                dot12 = dot(v1, v2)
                // Compute barycentric coordinates
                invDenom = 1 / (dot00 * dot11 - dot01 * dot01)
                u = (dot11 * dot02 - dot01 * dot12) * invDenom
                v = (dot00 * dot12 - dot01 * dot02) * invDenom
                // Check if point is in triangle
                return (u > 0) && (v > 0) && (u + v < 1)
                

The algorithm outlined here follows one of the techniques described in Realtime Collision Detection. You can also find more information about Barycentric Coordinates at Wikipedia and MathWorld.

posted on 2009-12-01 16:58 zmj 閱讀(1427) 評論(0)  編輯 收藏 引用


只有注冊用戶登錄后才能發(fā)表評論。
網(wǎng)站導(dǎo)航: 博客園   IT新聞   BlogJava   博問   Chat2DB   管理


青青草原综合久久大伊人导航_色综合久久天天综合_日日噜噜夜夜狠狠久久丁香五月_热久久这里只有精品
  • <ins id="pjuwb"></ins>
    <blockquote id="pjuwb"><pre id="pjuwb"></pre></blockquote>
    <noscript id="pjuwb"></noscript>
          <sup id="pjuwb"><pre id="pjuwb"></pre></sup>
            <dd id="pjuwb"></dd>
            <abbr id="pjuwb"></abbr>
            欧美激情精品久久久久久久变态| 欧美福利视频一区| 一区二区三区.www| 欧美日韩一区二区视频在线观看| 夜夜嗨一区二区| 艳妇臀荡乳欲伦亚洲一区| 欧美色精品在线视频| 性欧美暴力猛交另类hd| 性色av一区二区三区| 一区二区在线视频播放| 亚洲国产天堂网精品网站| 欧美日本高清视频| 午夜一区不卡| 久久亚洲国产成人| 亚洲少妇自拍| 欧美一区二区三区视频| 亚洲高清不卡| 一区二区国产精品| 在线电影一区| 日韩午夜免费视频| 国产综合色产在线精品| 亚洲国产精品久久91精品| 国产精品第一区| 久久久久一区二区三区| 欧美福利视频| 久久九九国产精品| 欧美日韩国产va另类| 久久精品中文字幕一区| 欧美精品激情| 久久精品国产2020观看福利| 欧美成人69av| 久久天天躁狠狠躁夜夜爽蜜月| 欧美美女bbbb| 美女诱惑一区| 国产欧美欧洲在线观看| 亚洲精品视频免费观看| 伊人精品在线| 欧美一区二区三区男人的天堂| 日韩视频永久免费| 欧美综合国产精品久久丁香| 亚洲午夜一区二区| 美女脱光内衣内裤视频久久影院| 欧美一区观看| 欧美三级黄美女| 亚洲激情网站免费观看| 影音先锋日韩资源| 先锋影音久久久| 亚洲免费影视| 欧美日韩麻豆| 亚洲精品欧洲精品| 亚洲国产一区二区三区青草影视| 欧美一区二区三区四区视频| 亚洲伊人第一页| 欧美三区不卡| 亚洲精品在线一区二区| 亚洲精品日韩一| 欧美v日韩v国产v| 欧美成人一区二区三区在线观看| 国产亚洲一级高清| 午夜精品www| 性伦欧美刺激片在线观看| 国产精品www.| 亚洲无线观看| 欧美亚洲综合在线| 国产麻豆综合| 欧美一二三视频| 久久国产一区二区| 国产真实乱偷精品视频免| 欧美在线视频一区二区| 久久国产一二区| 狠狠色综合网站久久久久久久| 性欧美暴力猛交另类hd| 久久久久久久网站| 狠狠色狠狠色综合人人| 久久蜜桃av一区精品变态类天堂| 蜜臀99久久精品久久久久久软件 | 久久er99精品| 久久人人超碰| 18成人免费观看视频| 美女主播精品视频一二三四| 欧美激情一区二区三区不卡| 亚洲激情一区二区| 欧美日韩精品伦理作品在线免费观看| 91久久一区二区| 亚洲一区二区视频| 国产一区二区精品久久| 久久亚洲综合色| 亚洲欧洲精品一区二区精品久久久 | 亚洲丝袜av一区| 久久久国产精品一区| 亚洲国产一区二区三区高清| 欧美激情欧美激情在线五月| 在线中文字幕一区| 久久美女性网| 9久草视频在线视频精品| 国产精品久久久久av| 久久er精品视频| 日韩视频―中文字幕| 久久国产99| 亚洲精品视频二区| 国产精品一区二区三区免费观看| 久久国产精品99国产| 亚洲精品久久久久| 欧美一区二区成人6969| 亚洲二区在线视频| 国产精品美女主播| 欧美成人69| 午夜影院日韩| 亚洲精品专区| 久久亚洲综合| 亚洲欧美日韩综合国产aⅴ| 一区二区三区在线看| 欧美性大战久久久久| 久久综合中文字幕| 亚洲在线观看视频网站| 91久久精品日日躁夜夜躁国产| 欧美一区在线视频| 一本久道综合久久精品| 有码中文亚洲精品| 国产日韩欧美麻豆| 欧美日精品一区视频| 看欧美日韩国产| 欧美在线免费播放| 夜夜爽夜夜爽精品视频| 亚洲第一成人在线| 麻豆国产精品777777在线 | 亚洲精品亚洲人成人网| 国产色视频一区| 国产精品www994| 欧美日韩国产一区精品一区| 久久综合激情| 久久精品视频在线观看| 午夜精品久久久久久久久| 亚洲裸体俱乐部裸体舞表演av| 欧美国产专区| 欧美激情91| 欧美激情中文字幕乱码免费| 乱人伦精品视频在线观看| 欧美在线国产精品| 性欧美xxxx视频在线观看| 亚洲一级免费视频| 一本大道久久精品懂色aⅴ| 亚洲精品久久久久久久久久久久| 一区在线视频| 亚洲国产高清在线观看视频| 禁久久精品乱码| 亚洲国产精品毛片| 亚洲欧洲另类| 亚洲美女av网站| 中文久久精品| 亚洲欧美国产精品va在线观看| 亚洲一区二区三区免费视频| 亚洲一区二区三区乱码aⅴ| 亚洲一区日韩| 欧美一区二区日韩| 久久久久国色av免费看影院| 久久裸体视频| 欧美激情中文不卡| 日韩午夜三级在线| 亚洲伊人一本大道中文字幕| 欧美亚洲综合在线| 久久免费高清| 欧美精品免费在线观看| 欧美三级精品| 国产在线乱码一区二区三区| 亚洲黄色av一区| 一区二区三区视频观看| 香蕉尹人综合在线观看| 久久青青草原一区二区| 亚洲第一免费播放区| 一区二区免费在线播放| 欧美一区2区三区4区公司二百| 久久精品亚洲国产奇米99| 欧美成人国产| 国产美女精品人人做人人爽| 在线观看日韩国产| 亚洲主播在线| 欧美高清视频一区二区| 一本色道久久综合亚洲精品小说| 欧美一区二区视频网站| 欧美激情片在线观看| 国产日韩视频| 亚洲精品一二| 久久久久久久久岛国免费| 亚洲精品一区中文| 久久久久国产一区二区| 欧美性天天影院| 亚洲成色最大综合在线| 性欧美暴力猛交另类hd| 亚洲国产日韩精品| 欧美一区二区三区视频| 欧美日产国产成人免费图片| 韩国一区电影| 亚洲欧美日韩在线播放| 亚洲国产精品一区二区久| 久久gogo国模裸体人体| 国产精品女主播在线观看 | 国产精品一二一区| 日韩一级二级三级| 免费一级欧美片在线播放|