• <ins id="pjuwb"></ins>
    <blockquote id="pjuwb"><pre id="pjuwb"></pre></blockquote>
    <noscript id="pjuwb"></noscript>
          <sup id="pjuwb"><pre id="pjuwb"></pre></sup>
            <dd id="pjuwb"></dd>
            <abbr id="pjuwb"></abbr>

            Point-Plane Distance

            LINK: http://mathworld.wolfram.com/Point-PlaneDistance.html
            Point-Plane Distance
            PointPlaneDistance

            Given a plane

             ax+by+cz+d=0
            (1)

            and a point x_0=(x_0,y_0,z_0), the normal to the plane is given by

             v=[a; b; c],
            (2)

            and a vector from the plane to the point is given by

             w=-[x-x_0; y-y_0; z-z_0].
            (3)

            Projecting w onto v gives the distance D from the point to the plane as

            D = |proj_(v)w|
            (4)
            = (|v·w|)/(|v|)
            (5)
            = (|a(x-x_0)+b(y-y_0)+c(z-z_0)|)/(sqrt(a^2+b^2+c^2))
            (6)
            = (|ax+by+cz-ax_0-by_0-cz_0|)/(sqrt(a^2+b^2+c^2))
            (7)
            = (|ax_0+by_0+cz_0+d|)/(sqrt(a^2+b^2+c^2)).
            (8)

            Dropping the absolute value signs gives the signed distance,

             D=(ax_0+by_0+cz_0+d)/(sqrt(a^2+b^2+c^2)),
            (9)

            which is positive if x_0 is on the same side of the plane as the normal vector v and negative if it is on the opposite side.

            This can be expressed particularly conveniently for a plane specified in Hessian normal form by the simple equation

             D=n^^·x_0+p,
            (10)

            where n^^=v/|v| is the unit normal vector. Therefore, the distance of the plane from the origin is simply given by p (Gellert et al. 1989, p. 541).

            Given three points x_i for i=1, 2, 3, compute the unit normal

             n^^=((x_2-x_1)x(x_3-x_1))/(|(x_2-x_1)x(x_3-x_1)|).
            (11)

            Then the distance from a point x_0 to the plane containing the three points is given by

             D_i=n^^·(x_0-x_i),
            (12)

            where x_i is any of the three points. Expanding out the coordinates shows that

             D=D_1=D_2=D_3,
            (13)

            as it must since all points are in the same plane, although this is far from obvious based on the above vector equation.

            SEE ALSO: Hessian Normal Form, Plane, Point, Projection Theorem

            REFERENCES:

            Gellert, W.; Gottwald, S.; Hellwich, M.; Kästner, H.; and Künstner, H. (Eds.). VNR Concise Encyclopedia of Mathematics, 2nd ed. New York: Van Nostrand Reinhold, 1989.




            CITE THIS AS:

            Weisstein, Eric W. "Point-Plane Distance." From MathWorld--A Wolfram Web Resource. http://mathworld.wolfram.com/Point-PlaneDistance.html

            posted on 2009-03-24 17:18 zmj 閱讀(1082) 評(píng)論(0)  編輯 收藏 引用


            只有注冊(cè)用戶登錄后才能發(fā)表評(píng)論。
            網(wǎng)站導(dǎo)航: 博客園   IT新聞   BlogJava   博問   Chat2DB   管理


            亚洲性久久久影院| 亚洲乱码日产精品a级毛片久久 | 狠狠综合久久AV一区二区三区| 伊人久久五月天| 精品久久久久久综合日本| 精品久久久无码中文字幕| 久久久一本精品99久久精品88| av国内精品久久久久影院| 久久男人AV资源网站| 99久久er这里只有精品18| 久久综合鬼色88久久精品综合自在自线噜噜 | 久久国产亚洲精品| 国产精品免费久久久久影院| 伊人久久精品无码二区麻豆| 久久免费香蕉视频| 久久九九久精品国产| 99久久婷婷免费国产综合精品| 香蕉99久久国产综合精品宅男自 | 日韩人妻无码一区二区三区久久 | 久久99精品久久久久久久久久 | 久久精品国产99久久久古代| 久久九九青青国产精品| 99久久精品免费| 久久久久亚洲AV无码去区首| 久久久久一本毛久久久| 日韩中文久久| 久久久老熟女一区二区三区| 99国产欧美久久久精品蜜芽| 久久综合久久自在自线精品自| 国产精品久久亚洲不卡动漫| 色婷婷噜噜久久国产精品12p| 久久亚洲sm情趣捆绑调教| 久久精品国产91久久综合麻豆自制| 久久丫精品国产亚洲av不卡| 青青草国产精品久久| 精品久久一区二区三区| 久久99国产乱子伦精品免费| 精品乱码久久久久久久| www.久久热.com| 久久99精品久久久久久水蜜桃| 国产午夜精品久久久久九九电影|