• <ins id="pjuwb"></ins>
    <blockquote id="pjuwb"><pre id="pjuwb"></pre></blockquote>
    <noscript id="pjuwb"></noscript>
          <sup id="pjuwb"><pre id="pjuwb"></pre></sup>
            <dd id="pjuwb"></dd>
            <abbr id="pjuwb"></abbr>

            Point-Plane Distance

            LINK: http://mathworld.wolfram.com/Point-PlaneDistance.html
            Point-Plane Distance
            PointPlaneDistance

            Given a plane

             ax+by+cz+d=0
            (1)

            and a point x_0=(x_0,y_0,z_0), the normal to the plane is given by

             v=[a; b; c],
            (2)

            and a vector from the plane to the point is given by

             w=-[x-x_0; y-y_0; z-z_0].
            (3)

            Projecting w onto v gives the distance D from the point to the plane as

            D = |proj_(v)w|
            (4)
            = (|v·w|)/(|v|)
            (5)
            = (|a(x-x_0)+b(y-y_0)+c(z-z_0)|)/(sqrt(a^2+b^2+c^2))
            (6)
            = (|ax+by+cz-ax_0-by_0-cz_0|)/(sqrt(a^2+b^2+c^2))
            (7)
            = (|ax_0+by_0+cz_0+d|)/(sqrt(a^2+b^2+c^2)).
            (8)

            Dropping the absolute value signs gives the signed distance,

             D=(ax_0+by_0+cz_0+d)/(sqrt(a^2+b^2+c^2)),
            (9)

            which is positive if x_0 is on the same side of the plane as the normal vector v and negative if it is on the opposite side.

            This can be expressed particularly conveniently for a plane specified in Hessian normal form by the simple equation

             D=n^^·x_0+p,
            (10)

            where n^^=v/|v| is the unit normal vector. Therefore, the distance of the plane from the origin is simply given by p (Gellert et al. 1989, p. 541).

            Given three points x_i for i=1, 2, 3, compute the unit normal

             n^^=((x_2-x_1)x(x_3-x_1))/(|(x_2-x_1)x(x_3-x_1)|).
            (11)

            Then the distance from a point x_0 to the plane containing the three points is given by

             D_i=n^^·(x_0-x_i),
            (12)

            where x_i is any of the three points. Expanding out the coordinates shows that

             D=D_1=D_2=D_3,
            (13)

            as it must since all points are in the same plane, although this is far from obvious based on the above vector equation.

            SEE ALSO: Hessian Normal Form, Plane, Point, Projection Theorem

            REFERENCES:

            Gellert, W.; Gottwald, S.; Hellwich, M.; Kästner, H.; and Künstner, H. (Eds.). VNR Concise Encyclopedia of Mathematics, 2nd ed. New York: Van Nostrand Reinhold, 1989.




            CITE THIS AS:

            Weisstein, Eric W. "Point-Plane Distance." From MathWorld--A Wolfram Web Resource. http://mathworld.wolfram.com/Point-PlaneDistance.html

            posted on 2009-03-24 17:18 zmj 閱讀(1075) 評論(0)  編輯 收藏 引用

            91精品国产高清91久久久久久| 色综合久久天天综线观看| 久久精品成人欧美大片| 香蕉久久夜色精品升级完成| 国产精品久久久久影视不卡| 国产A级毛片久久久精品毛片| 国产精品一区二区久久精品涩爱| 久久人人爽人人爽人人片AV不| 狠狠色丁香久久综合婷婷| 亚洲国产精品一区二区三区久久| 人妻精品久久久久中文字幕一冢本| 天天久久狠狠色综合| 久久精品日日躁夜夜躁欧美| 香港aa三级久久三级| 亚洲精品无码专区久久久| 国产精品免费看久久久香蕉| 一本久道久久综合狠狠爱| 久久久久久一区国产精品| 久久成人精品视频| 亚洲国产精品无码成人片久久| 热久久国产欧美一区二区精品| 99久久精品国产一区二区三区| 久久青青草原亚洲av无码app| 伊人久久大香线蕉综合5g| 久久人人爽人人爽人人片AV麻豆| 久久电影网2021| 久久中文字幕一区二区| 久久久亚洲欧洲日产国码aⅴ| 久久久无码精品亚洲日韩蜜臀浪潮| 久久最新免费视频| 久久精品亚洲福利| 久久久WWW成人免费毛片| 国产精品久久久天天影视香蕉| 狠狠色丁香婷婷综合久久来 | 久久精品亚洲欧美日韩久久| 国内精品久久久久久野外| 99久久这里只有精品| www.久久热| 九九热久久免费视频| 久久亚洲精品无码播放| 亚洲另类欧美综合久久图片区|