青青草原综合久久大伊人导航_色综合久久天天综合_日日噜噜夜夜狠狠久久丁香五月_热久久这里只有精品

Shadow volume

http://en.wikipedia.org/wiki/Shadow_volume

Shadow volumes are a technique used in 3D computer graphics to add shadows to a rendered scene. They were first proposed by Frank Crow in 1977[1] as the geometry describing the 3D shape of the region occluded from a light source. A shadow volume divides the virtual world in two: areas that are in shadow and areas that are not.

The stencil buffer implementation of shadow volumes is generally considered among the most practical general purpose real-time shadowing techniques utilizing the capabilities of modern 3D graphics hardware. It has been popularized by the computer game Doom 3, and a particular variation of the technique used in this game has become known as Carmack's Reverse (see depth fail below).

This technique as well as shadow mapping has become popular real-time shadowing techniques. The main advantage of shadow volumes is that they are accurate to the pixel (though many implementations have a minor self-shadowing problem along the silhouette edge, see construction below), whereas the accuracy of a shadow map depends on the texture memory allotted to it as well as the angle at which the shadows are cast (at some angles, the accuracy of a shadow map unavoidably suffers). However, the shadow volume technique requires the creation of shadow geometry, which can be CPU intensive (depending on the implementation). The advantage of shadow mapping is that it is often faster, the reason for which is that shadow volume polygons are often very large in terms of screen space and require a lot of fill time (especially for convex objects), whereas shadow maps do not have this limitation.

Contents

[hide]

[edit] Construction

In order to construct a shadow volume, project a ray from the light through each vertex in the shadow casting object to some point (generally at infinity). These projections will together form a volume; any point inside that volume is in shadow, everything outside is lit by the light.

For a polygonal model, the volume is usually formed by classifying each face in the model as either facing toward the light source or facing away from the light source. The set of all edges that connect a toward-face to an away-face form the silhouette with respect to the light source. The edges forming the silhouette are extruded away from the light to construct the faces of the shadow volume. This volume must extend over the range of the entire visible scene; often the dimensions of the shadow volume are extended to infinity to accomplish this (see optimization below.) To form a closed volume, the front and back end of this extrusion must be covered. These coverings are called "caps". Depending on the method used for the shadow volume, the front end may be covered by the object itself, and the rear end may sometimes be omitted (see depth pass below).

There is also a problem with the shadow where the faces along the silhouette edge are relatively shallow. In this case, the shadow an object casts on itself will be sharp, revealing its polygonal facets, whereas the usual lighting model will have a gradual change in the lighting along the facet. This leaves a rough shadow artifact near the silhouette edge which is difficult to correct. Increasing the polygonal density will minimize the problem, but not eliminate it. If the front of the shadow volume is capped, the entire shadow volume may be offset slightly away from the light to remove any shadow self-intersections within the offset distance of the silhouette edge (this solution is more commonly used in shadow mapping).

The basic steps for forming a shadow volume are:

  1. Find all silhouette edges (edges which separate front-facing faces from back-facing faces)
  2. Extend all silhouette edges in the direction away from the light-source
  3. Add a front-cap and/or back-cap to each surface to form a closed volume (may not be necessary, depending on the implementation used)
Illustration of shadow volumes. The image above at left shows a scene shadowed using shadow volumes. At right, the shadow volumes are shown in wireframe. Note how the shadows form a large conical area pointing away from the light source (the bright white point).

[edit] Stencil buffer implementations

After Crow, Tim Heidmann showed in 1991 how to use the stencil buffer to render shadows with shadow volumes quickly enough for use in real time applications. There are three common variations to this technique, depth pass, depth fail, and exclusive-or, but all of them use the same process:

  1. Render the scene as if it were completely in shadow.
  2. For each light source:
    1. Using the depth information from that scene, construct a mask in the stencil buffer that has holes only where the visible surface is not in shadow.
    2. Render the scene again as if it were completely lit, using the stencil buffer to mask the shadowed areas. Use additive blending to add this render to the scene.

The difference between these three methods occurs in the generation of the mask in the second step. Some involve two passes, and some only one; some require less precision in the stencil buffer. (These algorithms function well in both OpenGL and Direct3D.)

Shadow volumes tend to cover large portions of the visible scene, and as a result consume valuable rasterization time (fill time) on 3D graphics hardware. This problem is compounded by the complexity of the shadow casting objects, as each object can cast its own shadow volume of any potential size onscreen. See optimization below for a discussion of techniques used to combat the fill time problem.

[edit] Depth pass

Heidmann proposed that if the front surfaces and back surfaces of the shadows were rendered in separate passes, the number of front faces and back faces in front of an object can be counted using the stencil buffer. If an object's surface is in shadow, there will be more front facing shadow surfaces between it and the eye than back facing shadow surfaces. If their numbers are equal, however, the surface of the object is not in shadow. The generation of the stencil mask works as follows:

  1. Disable writes to the depth and colour buffers.
  2. Use back-face culling.
  3. Set the stencil operation to increment on depth pass (only count shadows in front of the object).
  4. Render the shadow volumes (because of culling, only their front faces are rendered).
  5. Use front-face culling.
  6. Set the stencil operation to decrement on depth pass.
  7. Render the shadow volumes (only their back faces are rendered).

After this is accomplished, all lit surfaces will correspond to a 0 in the stencil buffer, where the numbers of front and back surfaces of all shadow volumes between the eye and that surface are equal.

This approach has problems when the eye itself is inside a shadow volume (for example, when the light source moves behind an object). From this point of view, the eye sees the back face of this shadow volume before anything else, and this adds a −1 bias to the entire stencil buffer, effectively inverting the shadows. This can be remedied by adding a "cap" surface to the front of the shadow volume facing the eye, such as at the front clipping plane. There is another situation where the eye may be in the shadow of a volume cast by an object behind the camera, which also has to be capped somehow to prevent a similar problem. In most common implementations, because properly capping for depth-pass can be difficult to accomplish, the depth-fail method (see below) may be licensed for these special situations. Alternatively one can give the stencil buffer a +1 bias for every shadow volume the camera is inside, though doing the detection can be slow.

There is another potential problem if the stencil buffer does not have enough bits to accommodate the number of shadows visible between the eye and the object surface, because it uses saturation arithmetic. (If they used arithmetic overflow instead, the problem would be insignificant.)

Depth pass testing is also known as z-pass testing, as the depth buffer is often referred to as the z-buffer.

[edit] Depth fail

Around 2000, several people discovered that Heidmann's method can be made to work for all camera positions by reversing the depth. Instead of counting the shadow surfaces in front of the object's surface, the surfaces behind it can be counted just as easily, with the same end result. This solves the problem of the eye being in shadow, since shadow volumes between the eye and the object are not counted, but introduces the condition that the rear end of the shadow volume must be capped, or shadows will end up missing where the volume points backward to infinity.

  1. Disable writes to the depth and colour buffers.
  2. Use front-face culling.
  3. Set the stencil operation to increment on depth fail (only count shadows behind the object).
  4. Render the shadow volumes.
  5. Use back-face culling.
  6. Set the stencil operation to decrement on depth fail.
  7. Render the shadow volumes.

The depth fail method has the same considerations regarding the stencil buffer's precision as the depth pass method. Also, similar to depth pass, it is sometimes referred to as the z-fail method.

William Bilodeau and Michael Songy discovered this technique in October 1998, and presented the technique at Creativity, a Creative Labs developer's conference, in 1999[1]. Sim Dietrich presented this technique at a Creative Labs developer's forum in 1999 [2]. A few months later, William Bilodeau and Michael Songy filed a US patent application for the technique the same year, US patent 6384822, entitled "Method for rendering shadows using a shadow volume and a stencil buffer" issued in 2002. John Carmack of id Software independently discovered the algorithm in 2000 during the development of Doom 3 [3]. Since he advertised the technique to the larger public, it is often known as Carmack's Reverse.

Bilodeau and Songy assigned their patent ownership rights to Creative Labs. Creative Labs, in turn, granted id Software a license to use the invention free of charge in exchange for future support of EAX technology. [4]

[edit] Exclusive-Or

Either of the above types may be approximated with an Exclusive-Or variation, which does not deal properly with intersecting shadow volumes, but saves one rendering pass (if not fill time), and only requires a 1-bit stencil buffer. The following steps are for the depth pass version:

  1. Disable writes to the depth and colour buffers.
  2. Set the stencil operation to XOR on depth pass (flip on any shadow surface).
  3. Render the shadow volumes.

[edit] Optimization

  • One method of speeding up the shadow volume geometry calculations is to utilize existing parts of the rendering pipeline to do some of the calculation. For instance, by using homogeneous coordinates, the w-coordinate may be set to zero to extend a point to infinity. This should be accompanied by a viewing frustum that has a far clipping plane that extends to infinity in order to accommodate those points, accomplished by using a specialized projection matrix. This technique reduces the accuracy of the depth buffer slightly, but the difference is usually negligible. Please see SIGGRAPH 2002 paper Practical and Robust Stenciled Shadow Volumes for Hardware-Accelerated Rendering, C. Everitt and M. Kilgard, for a detailed implementation.
  • Rasterization time of the shadow volumes can be reduced by using an in-hardware scissor test to limit the shadows to a specific onscreen rectangle.
  • NVIDIA has implemented a hardware capability called the depth bounds test that is designed to remove parts of shadow volumes that do not affect the visible scene. (This has been available since the GeForce FX 5900 model.) A discussion of this capability and its use with shadow volumes was presented at the Game Developers Conference in 2005. [5]
  • Since the depth-fail method only offers an advantage over depth-pass in the special case where the eye is within a shadow volume, it is preferable to check for this case, and use depth-pass wherever possible. This avoids both the unnecessary back-capping (and the associated rasterization) for cases where depth-fail is unnecessary, as well as the problem of appropriately front-capping for special cases of depth-pass.

[edit] See also

[edit] External links

[edit] Regarding depth-fail patents

[edit] References

  1. ^ Crow, Franklin C: "Shadow Algorithms for Computer Graphics", Computer Graphics (SIGGRAPH '77 Proceedings), vol. 11, no. 2, 242-248.

posted on 2008-09-26 17:24 zmj 閱讀(1681) 評(píng)論(0)  編輯 收藏 引用


只有注冊(cè)用戶登錄后才能發(fā)表評(píng)論。
網(wǎng)站導(dǎo)航: 博客園   IT新聞   BlogJava   博問(wèn)   Chat2DB   管理


青青草原综合久久大伊人导航_色综合久久天天综合_日日噜噜夜夜狠狠久久丁香五月_热久久这里只有精品
  • <ins id="pjuwb"></ins>
    <blockquote id="pjuwb"><pre id="pjuwb"></pre></blockquote>
    <noscript id="pjuwb"></noscript>
          <sup id="pjuwb"><pre id="pjuwb"></pre></sup>
            <dd id="pjuwb"></dd>
            <abbr id="pjuwb"></abbr>
            亚洲午夜日本在线观看| 亚洲国产欧美日韩精品| 欧美一区二区视频在线| 亚洲一区二区三区免费在线观看| 亚洲免费av片| 99国内精品| 午夜精品久久久久久久99黑人| 午夜在线视频一区二区区别| 久久精品麻豆| 欧美成人高清| 欧美色另类天堂2015| 国产精品入口66mio| 国产视频一区在线观看| 永久91嫩草亚洲精品人人| 亚洲经典视频在线观看| 亚洲午夜精品久久| 久久久99国产精品免费| 亚洲福利视频在线| 亚洲日韩欧美视频| 午夜精品一区二区三区四区| 久久精品视频在线免费观看| 欧美精品自拍| 国产一区二区欧美| 最新日韩在线| 久久大香伊蕉在人线观看热2| 久久成人国产| 国产精品一区二区女厕厕| 狠狠色2019综合网| 亚洲免费观看高清完整版在线观看熊 | 久久午夜视频| 欧美暴力喷水在线| 国产欧美精品日韩| 亚洲精品国产精品国自产在线| 亚洲欧美影院| 亚洲人屁股眼子交8| 午夜欧美精品| 欧美视频一区在线| 亚洲第一页在线| 久久国产色av| 在线一区日本视频| 欧美激情在线观看| 在线播放不卡| 久久九九国产精品怡红院| 99国产精品99久久久久久| 久久理论片午夜琪琪电影网| 国产精品高清一区二区三区| 亚洲精品黄色| 欧美va亚洲va日韩∨a综合色| 亚洲天堂成人在线视频| 欧美日本一道本在线视频| 揄拍成人国产精品视频| 久久精品女人| 亚洲欧美另类国产| 欧美日韩午夜激情| 一区二区日韩欧美| 亚洲国产精品成人精品| 久久精品国产一区二区电影| 国产精品欧美日韩一区二区| 亚洲一区久久久| 亚洲六月丁香色婷婷综合久久| 你懂的国产精品永久在线| 亚洲高清视频一区| 免费观看成人| 欧美69视频| 99国产精品99久久久久久粉嫩| 欧美激情一区二区三区成人| 另类综合日韩欧美亚洲| 在线日韩av永久免费观看| 免费一级欧美片在线播放| 久久亚洲一区二区| 亚洲九九爱视频| 99国产精品自拍| 国产精品日韩| 久久久综合精品| 蜜臀久久久99精品久久久久久 | 国产色产综合产在线视频| 欧美日韩国产成人| 欧美剧在线免费观看网站| 一区二区欧美视频| 亚洲一区二区三区久久| 国产日产高清欧美一区二区三区| 久久国产精品电影| 久久香蕉国产线看观看av| 91久久国产自产拍夜夜嗨| 亚洲精品在线二区| 国产精品一区三区| 免费日本视频一区| 欧美三级日本三级少妇99| 亚洲一区二区三区精品动漫| 亚洲欧美日韩国产综合| 亚洲第一毛片| 一区二区三区久久精品| 国产亚洲欧美色| 欧美成人一区二免费视频软件| 欧美福利影院| 久久9热精品视频| 麻豆成人综合网| 亚洲自拍偷拍视频| 久久久久久久久伊人| 亚洲色图综合久久| 久久久夜色精品亚洲| 一本一道久久综合狠狠老精东影业 | 亚洲欧美日韩国产中文| 久久国产精品免费一区| 99ri日韩精品视频| 欧美一区二区成人| 日韩午夜激情| 久久久人人人| 欧美一二三区精品| 欧美另类变人与禽xxxxx| 久久精品动漫| 欧美色区777第一页| 欧美福利电影网| 国产精品一区二区你懂得| 亚洲国产美女精品久久久久∴| 国产精品伊人日日| 日韩视频国产视频| 亚洲精品美女91| 久久五月婷婷丁香社区| 欧美在线视频日韩| 国产精品盗摄一区二区三区| 亚洲欧洲一区二区三区在线观看| 国产在线麻豆精品观看| 亚洲视频一区在线观看| 一区二区三区欧美成人| 欧美高清在线一区| 亚洲第一网站| 亚洲欧洲精品一区二区精品久久久| 亚洲午夜日本在线观看| 一区二区三区av| 欧美区一区二| 亚洲精品国产品国语在线app| 亚洲第一在线综合网站| 久久国产精品亚洲77777| 香蕉久久夜色| 国产精品一卡| 欧美亚洲一区| 欧美三级电影大全| 国产欧美一区二区在线观看| 欧美激情免费观看| 国语自产精品视频在线看| 亚洲在线免费视频| 一区二区av在线| 欧美日本韩国一区| 欧美成人情趣视频| 亚洲国产高清一区二区三区| 欧美一级视频一区二区| 亚洲欧美日本国产有色| 国产精品美女久久久久av超清| 在线视频亚洲一区| 亚洲综合大片69999| 国产精品久久久久久久午夜片 | 9l视频自拍蝌蚪9l视频成人| 日韩亚洲欧美高清| 欧美日韩国产三区| aaa亚洲精品一二三区| 亚洲天堂久久| 国产精品一区二区久久国产| 午夜伦理片一区| 免费h精品视频在线播放| 亚洲国产日日夜夜| 欧美日韩国产综合视频在线观看| 国产精品99久久久久久人| 亚洲欧美日本在线| 国产主播喷水一区二区| 久久亚洲视频| 一区二区三区欧美成人| 久久视频免费观看| 亚洲最黄网站| 国产一区二区按摩在线观看| 久久在线播放| 一区二区三区欧美视频| 久久天天躁狠狠躁夜夜av| 亚洲美女在线观看| 国产精品免费一区二区三区观看| 久久久91精品| 一本久道久久久| 欧美mv日韩mv国产网站app| 这里只有视频精品| 激情欧美日韩| 国产精品嫩草99av在线| 久久亚洲私人国产精品va| 一区二区三区波多野结衣在线观看| 久久精品最新地址| 一区二区免费在线播放| 精品成人国产| 国产精品国产精品国产专区不蜜| 久久久精品一品道一区| 亚洲视频在线视频| 欧美不卡视频| 久久精品视频va| 亚洲午夜影视影院在线观看| 精品电影一区| 欧美日韩亚洲91| 久热精品视频在线观看一区| 亚洲男人天堂2024| 亚洲激情欧美| 久久伊人精品天天| 欧美中文字幕第一页| 亚洲一区二区三区视频|