• <ins id="pjuwb"></ins>
    <blockquote id="pjuwb"><pre id="pjuwb"></pre></blockquote>
    <noscript id="pjuwb"></noscript>
          <sup id="pjuwb"><pre id="pjuwb"></pre></sup>
            <dd id="pjuwb"></dd>
            <abbr id="pjuwb"></abbr>

            The 2010 ACM-ICPC Asia Chengdu Regional Contest Error Curves 三分法求凸函數極值

            Error Curves

            Time Limit: 2 Seconds      Memory Limit: 65536 KB

            Josephina is a clever girl and addicted to Machine Learning recently. She pays much attention to a method called Linear Discriminant Analysis, which has many interesting properties.

            In order to test the algorithm's efficiency, she collects many datasets. What's more, each data is divided into two parts: training data and test data. She gets the parameters of the model on training data and test the model on test data.

            To her surprise, she finds each dataset's test error curve is just a parabolic curve. A parabolic curve corresponds to a quadratic function. In mathematics, a quadratic function is a polynomial function of the form f(x) = ax2 + bx + c. The quadratic will degrade to linear function if a = 0.

            Quadric Function

            It's very easy to calculate the minimal error if there is only one test error curve. However, there are several datasets, which means Josephina will obtain many parabolic curves. Josephina wants to get the tuned parameters that make the best performance on all datasets. So she should take all error curves into account, i.e., she has to deal with many quadric functions and make a new error definition to represent the total error. Now, she focuses on the following new function's minimal which related to multiple quadric functions.

            The new function F(x) is defined as follow:

            F(x) = max(Si(x)), i = 1...n. The domain of x is [0, 1000]. Si(x) is a quadric function.

            Josephina wonders the minimum of F(x). Unfortunately, it's too hard for her to solve this problem. As a super programmer, can you help her?

            Input

            The input contains multiple test cases. The first line is the number of cases T (T < 100). Each case begins with a number n(n ≤ 10000). Following n lines, each line contains three integers a (0 ≤ a ≤ 100), b (|b| ≤ 5000), c (|c| ≤ 5000), which mean the corresponding coefficients of a quadratic function.

            Output

            For each test case, output the answer in a line. Round to 4 digits after the decimal point.

            Sample Input

            2
            1
            2 0 0
            2
            2 0 0
            2 -4 2
            

            Sample Output

            0.0000
            0.5000
            
            簡明題意:求一堆開口向上的二次函數在[0,1000]范圍上函數值最大值的最小值。
            二次函數的子集仍然為凸函數,所以可以用三分法求極值。精度實在很蛋疼,這題要求值域精確到1e-4,但是定義域沒說精確到多少,結果死wa,卡到1e-10終于過了。。
            貼代碼
             1# include <cstdio>
             2# include <cmath>
             3using namespace std;
             4int n;
             5int data[10001][3];
             6# define max(a,b) ((a)>(b)?(a):(b))
             7double cal(double mid)
             8{
             9   double res=-1e26;
            10   for(int i=0;i<n;i++)
            11     res=max(res,data[i][0]*mid*mid+data[i][1]*mid+data[i][2]);
            12   return res;
            13}

            14int main()
            15{
            16    int test;
            17    scanf("%d",&test);
            18    while(test--)
            19    {
            20       scanf("%d",&n);
            21       for(int i=0;i<n;i++)
            22         scanf("%d%d%d",&data[i][0],&data[i][1],&data[i][2]);
            23       double s=0.0,e=1000.0;
            24       double last=s;
            25       while(fabs(e-s)>1e-10)
            26       {
            27       
            28         double m1=(s+e)/2.0,m2=(m1+e)/2.0;
            29         if(cal(m1)<cal(m2))
            30           e=m2;
            31         else 
            32           s=m1;
            33       }

            34       printf("%.4lf\n",cal(e));
            35    }

            36    return 0;
            37}

            38
            39

            posted on 2010-11-16 00:50 yzhw 閱讀(814) 評論(0)  編輯 收藏 引用 所屬分類: numberic

            <2011年3月>
            272812345
            6789101112
            13141516171819
            20212223242526
            272829303112
            3456789

            導航

            統計

            公告

            統計系統

            留言簿(1)

            隨筆分類(227)

            文章分類(2)

            OJ

            最新隨筆

            搜索

            積分與排名

            最新評論

            閱讀排行榜

            国内精品伊人久久久久777| 久久综合狠狠色综合伊人| 一本大道久久香蕉成人网| 国产精品久久婷婷六月丁香| 亚洲国产欧洲综合997久久| 99精品久久精品一区二区| 欧美久久一区二区三区| 久久人妻少妇嫩草AV无码专区| 66精品综合久久久久久久| 久久久久青草线蕉综合超碰| 久久久九九有精品国产| 欧美激情一区二区久久久| 久久久91精品国产一区二区三区| 日本欧美国产精品第一页久久| 99国产欧美久久久精品蜜芽| 伊人伊成久久人综合网777| 日韩亚洲欧美久久久www综合网| 亚洲日本va午夜中文字幕久久 | 亚洲成人精品久久| 人妻精品久久无码专区精东影业| 久久久久亚洲AV成人网人人网站| www性久久久com| 三上悠亚久久精品| 99精品久久精品一区二区| 精品国产日韩久久亚洲| 久久久精品国产Sm最大网站| 久久久久久a亚洲欧洲aⅴ | 日韩精品久久久久久久电影| 精品多毛少妇人妻AV免费久久 | 亚洲国产精品18久久久久久| 久久人人爽人人爽人人爽| 亚洲国产成人久久综合碰| 久久人妻少妇嫩草AV蜜桃| 久久国产香蕉一区精品| 国产精品va久久久久久久| 精品无码久久久久久国产| 亚洲午夜精品久久久久久人妖| 人人狠狠综合久久亚洲88| 国产叼嘿久久精品久久| 久久久久亚洲精品无码网址 | 亚洲国产精久久久久久久|