• <ins id="pjuwb"></ins>
    <blockquote id="pjuwb"><pre id="pjuwb"></pre></blockquote>
    <noscript id="pjuwb"></noscript>
          <sup id="pjuwb"><pre id="pjuwb"></pre></sup>
            <dd id="pjuwb"></dd>
            <abbr id="pjuwb"></abbr>

            The 2010 ACM-ICPC Asia Chengdu Regional Contest Error Curves 三分法求凸函數極值

            Error Curves

            Time Limit: 2 Seconds      Memory Limit: 65536 KB

            Josephina is a clever girl and addicted to Machine Learning recently. She pays much attention to a method called Linear Discriminant Analysis, which has many interesting properties.

            In order to test the algorithm's efficiency, she collects many datasets. What's more, each data is divided into two parts: training data and test data. She gets the parameters of the model on training data and test the model on test data.

            To her surprise, she finds each dataset's test error curve is just a parabolic curve. A parabolic curve corresponds to a quadratic function. In mathematics, a quadratic function is a polynomial function of the form f(x) = ax2 + bx + c. The quadratic will degrade to linear function if a = 0.

            Quadric Function

            It's very easy to calculate the minimal error if there is only one test error curve. However, there are several datasets, which means Josephina will obtain many parabolic curves. Josephina wants to get the tuned parameters that make the best performance on all datasets. So she should take all error curves into account, i.e., she has to deal with many quadric functions and make a new error definition to represent the total error. Now, she focuses on the following new function's minimal which related to multiple quadric functions.

            The new function F(x) is defined as follow:

            F(x) = max(Si(x)), i = 1...n. The domain of x is [0, 1000]. Si(x) is a quadric function.

            Josephina wonders the minimum of F(x). Unfortunately, it's too hard for her to solve this problem. As a super programmer, can you help her?

            Input

            The input contains multiple test cases. The first line is the number of cases T (T < 100). Each case begins with a number n(n ≤ 10000). Following n lines, each line contains three integers a (0 ≤ a ≤ 100), b (|b| ≤ 5000), c (|c| ≤ 5000), which mean the corresponding coefficients of a quadratic function.

            Output

            For each test case, output the answer in a line. Round to 4 digits after the decimal point.

            Sample Input

            2
            1
            2 0 0
            2
            2 0 0
            2 -4 2
            

            Sample Output

            0.0000
            0.5000
            
            簡明題意:求一堆開口向上的二次函數在[0,1000]范圍上函數值最大值的最小值。
            二次函數的子集仍然為凸函數,所以可以用三分法求極值。精度實在很蛋疼,這題要求值域精確到1e-4,但是定義域沒說精確到多少,結果死wa,卡到1e-10終于過了。。
            貼代碼
             1# include <cstdio>
             2# include <cmath>
             3using namespace std;
             4int n;
             5int data[10001][3];
             6# define max(a,b) ((a)>(b)?(a):(b))
             7double cal(double mid)
             8{
             9   double res=-1e26;
            10   for(int i=0;i<n;i++)
            11     res=max(res,data[i][0]*mid*mid+data[i][1]*mid+data[i][2]);
            12   return res;
            13}

            14int main()
            15{
            16    int test;
            17    scanf("%d",&test);
            18    while(test--)
            19    {
            20       scanf("%d",&n);
            21       for(int i=0;i<n;i++)
            22         scanf("%d%d%d",&data[i][0],&data[i][1],&data[i][2]);
            23       double s=0.0,e=1000.0;
            24       double last=s;
            25       while(fabs(e-s)>1e-10)
            26       {
            27       
            28         double m1=(s+e)/2.0,m2=(m1+e)/2.0;
            29         if(cal(m1)<cal(m2))
            30           e=m2;
            31         else 
            32           s=m1;
            33       }

            34       printf("%.4lf\n",cal(e));
            35    }

            36    return 0;
            37}

            38
            39

            posted on 2010-11-16 00:50 yzhw 閱讀(801) 評論(0)  編輯 收藏 引用 所屬分類: numberic

            <2025年7月>
            293012345
            6789101112
            13141516171819
            20212223242526
            272829303112
            3456789

            導航

            統計

            公告

            統計系統

            留言簿(1)

            隨筆分類(227)

            文章分類(2)

            OJ

            最新隨筆

            搜索

            積分與排名

            最新評論

            閱讀排行榜

            久久精品国产精品亜洲毛片| 精品久久人妻av中文字幕| 久久久久久免费一区二区三区| 久久久国产精品亚洲一区| 久久精品蜜芽亚洲国产AV| 99热精品久久只有精品| 99久久综合狠狠综合久久| 久久亚洲AV成人无码| 波多野结衣中文字幕久久| 精品无码久久久久久国产| 久久经典免费视频| 婷婷综合久久中文字幕| 久久久久久久综合狠狠综合| 久久精品国产一区| 亚洲AV无码久久| 久久99热这里只有精品国产 | 久久综合九色综合网站| 国产精品久久永久免费| 狠狠色丁香婷婷久久综合| 99久久er这里只有精品18| 四虎影视久久久免费观看| 91精品国产高清91久久久久久| 亚洲&#228;v永久无码精品天堂久久 | 综合人妻久久一区二区精品| 久久国产V一级毛多内射| 国产亚洲精品美女久久久| 久久人人爽人人爽人人片AV麻烦| 国产69精品久久久久9999| av无码久久久久不卡免费网站| 亚洲人成网站999久久久综合| 国産精品久久久久久久| 久久精品国产精品青草app| 久久精品国产亚洲精品2020| 亚洲国产精品成人久久| 久久婷婷五月综合色奶水99啪| 人人狠狠综合88综合久久| 日本三级久久网| 国产伊人久久| 久久毛片免费看一区二区三区| 久久99精品久久久久久齐齐 | 伊人色综合久久天天人手人婷|