• <ins id="pjuwb"></ins>
    <blockquote id="pjuwb"><pre id="pjuwb"></pre></blockquote>
    <noscript id="pjuwb"></noscript>
          <sup id="pjuwb"><pre id="pjuwb"></pre></sup>
            <dd id="pjuwb"></dd>
            <abbr id="pjuwb"></abbr>

            The 2010 ACM-ICPC Asia Chengdu Regional Contest Error Curves 三分法求凸函數極值

            Error Curves

            Time Limit: 2 Seconds      Memory Limit: 65536 KB

            Josephina is a clever girl and addicted to Machine Learning recently. She pays much attention to a method called Linear Discriminant Analysis, which has many interesting properties.

            In order to test the algorithm's efficiency, she collects many datasets. What's more, each data is divided into two parts: training data and test data. She gets the parameters of the model on training data and test the model on test data.

            To her surprise, she finds each dataset's test error curve is just a parabolic curve. A parabolic curve corresponds to a quadratic function. In mathematics, a quadratic function is a polynomial function of the form f(x) = ax2 + bx + c. The quadratic will degrade to linear function if a = 0.

            Quadric Function

            It's very easy to calculate the minimal error if there is only one test error curve. However, there are several datasets, which means Josephina will obtain many parabolic curves. Josephina wants to get the tuned parameters that make the best performance on all datasets. So she should take all error curves into account, i.e., she has to deal with many quadric functions and make a new error definition to represent the total error. Now, she focuses on the following new function's minimal which related to multiple quadric functions.

            The new function F(x) is defined as follow:

            F(x) = max(Si(x)), i = 1...n. The domain of x is [0, 1000]. Si(x) is a quadric function.

            Josephina wonders the minimum of F(x). Unfortunately, it's too hard for her to solve this problem. As a super programmer, can you help her?

            Input

            The input contains multiple test cases. The first line is the number of cases T (T < 100). Each case begins with a number n(n ≤ 10000). Following n lines, each line contains three integers a (0 ≤ a ≤ 100), b (|b| ≤ 5000), c (|c| ≤ 5000), which mean the corresponding coefficients of a quadratic function.

            Output

            For each test case, output the answer in a line. Round to 4 digits after the decimal point.

            Sample Input

            2
            1
            2 0 0
            2
            2 0 0
            2 -4 2
            

            Sample Output

            0.0000
            0.5000
            
            簡明題意:求一堆開口向上的二次函數在[0,1000]范圍上函數值最大值的最小值。
            二次函數的子集仍然為凸函數,所以可以用三分法求極值。精度實在很蛋疼,這題要求值域精確到1e-4,但是定義域沒說精確到多少,結果死wa,卡到1e-10終于過了。。
            貼代碼
             1# include <cstdio>
             2# include <cmath>
             3using namespace std;
             4int n;
             5int data[10001][3];
             6# define max(a,b) ((a)>(b)?(a):(b))
             7double cal(double mid)
             8{
             9   double res=-1e26;
            10   for(int i=0;i<n;i++)
            11     res=max(res,data[i][0]*mid*mid+data[i][1]*mid+data[i][2]);
            12   return res;
            13}

            14int main()
            15{
            16    int test;
            17    scanf("%d",&test);
            18    while(test--)
            19    {
            20       scanf("%d",&n);
            21       for(int i=0;i<n;i++)
            22         scanf("%d%d%d",&data[i][0],&data[i][1],&data[i][2]);
            23       double s=0.0,e=1000.0;
            24       double last=s;
            25       while(fabs(e-s)>1e-10)
            26       {
            27       
            28         double m1=(s+e)/2.0,m2=(m1+e)/2.0;
            29         if(cal(m1)<cal(m2))
            30           e=m2;
            31         else 
            32           s=m1;
            33       }

            34       printf("%.4lf\n",cal(e));
            35    }

            36    return 0;
            37}

            38
            39

            posted on 2010-11-16 00:50 yzhw 閱讀(794) 評論(0)  編輯 收藏 引用 所屬分類: numberic

            <2011年1月>
            2627282930311
            2345678
            9101112131415
            16171819202122
            23242526272829
            303112345

            導航

            統計

            公告

            統計系統

            留言簿(1)

            隨筆分類(227)

            文章分類(2)

            OJ

            最新隨筆

            搜索

            積分與排名

            最新評論

            閱讀排行榜

            成人久久精品一区二区三区 | 2021国产精品午夜久久| 91久久九九无码成人网站| 婷婷综合久久中文字幕| 亚洲国产成人精品女人久久久 | 久久亚洲AV成人无码电影| 久久99精品久久久久久动态图 | 亚洲国产精品无码久久青草 | 狠色狠色狠狠色综合久久| 久久亚洲欧美日本精品| 亚洲欧美一级久久精品| 日韩精品久久无码中文字幕| 色综合久久中文综合网| 亚洲精品美女久久久久99小说 | 99久久精品国产麻豆| 亚洲国产香蕉人人爽成AV片久久 | 色综合久久无码五十路人妻| 婷婷综合久久狠狠色99h| 久久久久久精品免费免费自慰| 久久er国产精品免费观看2| 久久久久久久精品成人热色戒| 国产香蕉97碰碰久久人人| 久久精品国产亚洲AV蜜臀色欲| 久久精品这里只有精99品| 久久丫精品国产亚洲av| 久久人妻无码中文字幕| 久久久久亚洲?V成人无码| 亚洲AV无码久久精品成人| 一级做a爱片久久毛片| 久久99国内精品自在现线| 久久国产劲爆AV内射—百度| 青青青青久久精品国产| 国产精品国色综合久久| 精品久久久无码人妻中文字幕| 日本加勒比久久精品| 国产午夜福利精品久久| 91精品国产91久久久久久| 国产国产成人精品久久| 久久99精品综合国产首页| 亚洲国产精品久久66| 91精品国产高清久久久久久国产嫩草|