• <ins id="pjuwb"></ins>
    <blockquote id="pjuwb"><pre id="pjuwb"></pre></blockquote>
    <noscript id="pjuwb"></noscript>
          <sup id="pjuwb"><pre id="pjuwb"></pre></sup>
            <dd id="pjuwb"></dd>
            <abbr id="pjuwb"></abbr>

            pku1309 數(shù)學(xué)優(yōu)化+枚舉

            題目
            Coconuts, Revisited
            Time Limit: 1000MS
            Memory Limit: 10000K
            Total Submissions: 1832
            Accepted: 737

            Description

            The short story titled Coconuts, by Ben Ames Williams, appeared in the Saturday Evening Post on October 9, 1926. The story tells about five men and a monkey who were shipwrecked on an island. They spent the first night gathering coconuts. During the night, one man woke up and decided to take his share of the coconuts. He divided them into five piles. One coconut was left over so he gave it to the monkey, then hid his share and went back to sheep.

            Soon a second man woke up and did the same thing. After dividing the coconuts into five piles, one coconut was left over which he gave to the monkey. He then hid his share and went back to bed. The third, fourth, and fifth man followed exactly the same procedure. The next morning, after they all woke up, they divided the remaining coconuts into five equal shares. This time no coconuts were left over.

            An obvious question is "how many coconuts did they originally gather?" There are an infinite number of answers, but the lowest of these is 3,121. But that's not our problem here.

            Suppose we turn the problem around. If we know the number of coconuts that were gathered, what is the maximum number of persons (and one monkey) that could have been shipwrecked if the same procedure could occur?

            Input

            The input will consist of a sequence of integers, each representing the number of coconuts gathered by a group of persons (and a monkey) that were shipwrecked. The sequence will be followed by a negative number.

            Output

            For each number of coconuts, determine the largest number of persons who could have participated in the procedure described above. Display the results similar to the manner shown below, in the Expected Output. There may be no solution for some of the input cases; if so, state that observation.

            Sample Input

            25 30 3121 -1

            Sample Output

            25 coconuts, 3 people and 1 monkey 30 coconuts, no solution 3121 coconuts, 5 people and 1 monkey

            Source


            解法:
            首先寫出遞推公式
            f(0)=A  A=nk
            f(i)=f(i-1)/(n-1)*n+1

            隨便什么方法寫出閉形式
            f(n)=[(n^n)*(A+n-1)]/[(n-1)^n]-(n-1)
            題目中告訴f(n)的值,求n最大值
            首先觀察下前面那個(gè)分式,由于n和n-1互質(zhì),所以n^n和(n-1)^n也互質(zhì),分式結(jié)果要為一個(gè)整數(shù),f(n)+n-1中必須含有因子n^n;換句話說,f(n)+n-1>n^n,題目中給的f(n)可以用32位整數(shù)表示,那么n必然小于12!
            下面不用說什么了,暴力吧,肯定0MS了~不過為了完美,n^n我用了二進(jìn)制快速冪~具體看代碼吧

            代碼:
             1 Source Code
             2 Problem: 1309        User: yzhw
             3 Memory: 392K        Time: 0MS
             4 Language: G++        Result: Accepted
             5 
             6     Source Code
             7 
             8     # include <cstdio>
             9     using namespace std;
            10     long long pow(int a,int b)
            11     {
            12         long long ans=1,t=a;
            13         while(b)
            14         {
            15             if(b&1) ans*=t;
            16             t*=t;
            17             b>>=1;
            18         }
            19         return ans;
            20     }
            21     int main()
            22     {
            23         //freopen("input.txt","r",stdin);
            24         int n;
            25         while(scanf("%d",&n)!=EOF&&n>=0)
            26         {
            27             int ans=-1,i;
            28             for(i=2;i<=12;i++)
            29             {
            30                 long long t=n;
            31                 t+=i-1;
            32                 long long t1=pow(i,i),t2=pow(i-1,i);
            33                 if(t%t1==0)
            34                 {
            35                     t=t/t1*t2-i+1;
            36                     if(t>=0&&t%i==0) ans=i;
            37                 }
            38             }
            39             if(ans==-1) printf("%d coconuts, no solution\n",n);
            40             else printf("%d coconuts, %d people and 1 monkey\n",n,ans);
            41         }
            42         return 0;
            43     }
            44 
            45 

            posted on 2011-07-19 00:10 yzhw 閱讀(233) 評(píng)論(0)  編輯 收藏 引用 所屬分類: numberic

            <2011年1月>
            2627282930311
            2345678
            9101112131415
            16171819202122
            23242526272829
            303112345

            導(dǎo)航

            統(tǒng)計(jì)

            公告

            統(tǒng)計(jì)系統(tǒng)

            留言簿(1)

            隨筆分類(227)

            文章分類(2)

            OJ

            最新隨筆

            搜索

            積分與排名

            最新評(píng)論

            閱讀排行榜

            久久福利青草精品资源站| 日韩久久久久中文字幕人妻 | 久久无码精品一区二区三区| 精品亚洲综合久久中文字幕| 亚洲国产精品无码久久一线| 国内精品久久久久影院薰衣草 | 国产精品久久久久久久久久影院 | 77777亚洲午夜久久多喷| 久久热这里只有精品在线观看| 无码乱码观看精品久久| 国产精品99久久久久久宅男小说| 亚洲乱码日产精品a级毛片久久| 亚洲午夜无码久久久久小说| 亚洲愉拍99热成人精品热久久 | 精品久久久中文字幕人妻 | 久久国产精品无码网站| 久久久久99精品成人片三人毛片| 欧美久久综合九色综合| 99久久国产精品免费一区二区| 蜜臀av性久久久久蜜臀aⅴ| 免费观看久久精彩视频| 人妻系列无码专区久久五月天| 亚洲AV日韩精品久久久久久| 热久久国产精品| 久久久久久亚洲精品影院| 国产精品久久久久国产A级| 国产伊人久久| 久久国产精品一国产精品金尊| 久久国产精品视频| 看久久久久久a级毛片| 精品人妻伦九区久久AAA片69| 亚洲午夜久久久久久久久久 | 国产精品久久久久a影院| 狠狠色丁香婷婷久久综合不卡| 亚洲国产日韩欧美久久| 久久99国产精品二区不卡| 国产精品乱码久久久久久软件| 91精品国产91久久久久久| 亚洲AV无码久久| 亚洲午夜无码AV毛片久久| 99久久精品无码一区二区毛片|