• <ins id="pjuwb"></ins>
    <blockquote id="pjuwb"><pre id="pjuwb"></pre></blockquote>
    <noscript id="pjuwb"></noscript>
          <sup id="pjuwb"><pre id="pjuwb"></pre></sup>
            <dd id="pjuwb"></dd>
            <abbr id="pjuwb"></abbr>

            pku1309 數學優化+枚舉

            題目
            Coconuts, Revisited
            Time Limit: 1000MS
            Memory Limit: 10000K
            Total Submissions: 1832
            Accepted: 737

            Description

            The short story titled Coconuts, by Ben Ames Williams, appeared in the Saturday Evening Post on October 9, 1926. The story tells about five men and a monkey who were shipwrecked on an island. They spent the first night gathering coconuts. During the night, one man woke up and decided to take his share of the coconuts. He divided them into five piles. One coconut was left over so he gave it to the monkey, then hid his share and went back to sheep.

            Soon a second man woke up and did the same thing. After dividing the coconuts into five piles, one coconut was left over which he gave to the monkey. He then hid his share and went back to bed. The third, fourth, and fifth man followed exactly the same procedure. The next morning, after they all woke up, they divided the remaining coconuts into five equal shares. This time no coconuts were left over.

            An obvious question is "how many coconuts did they originally gather?" There are an infinite number of answers, but the lowest of these is 3,121. But that's not our problem here.

            Suppose we turn the problem around. If we know the number of coconuts that were gathered, what is the maximum number of persons (and one monkey) that could have been shipwrecked if the same procedure could occur?

            Input

            The input will consist of a sequence of integers, each representing the number of coconuts gathered by a group of persons (and a monkey) that were shipwrecked. The sequence will be followed by a negative number.

            Output

            For each number of coconuts, determine the largest number of persons who could have participated in the procedure described above. Display the results similar to the manner shown below, in the Expected Output. There may be no solution for some of the input cases; if so, state that observation.

            Sample Input

            25 30 3121 -1

            Sample Output

            25 coconuts, 3 people and 1 monkey 30 coconuts, no solution 3121 coconuts, 5 people and 1 monkey

            Source


            解法:
            首先寫出遞推公式
            f(0)=A  A=nk
            f(i)=f(i-1)/(n-1)*n+1

            隨便什么方法寫出閉形式
            f(n)=[(n^n)*(A+n-1)]/[(n-1)^n]-(n-1)
            題目中告訴f(n)的值,求n最大值
            首先觀察下前面那個分式,由于n和n-1互質,所以n^n和(n-1)^n也互質,分式結果要為一個整數,f(n)+n-1中必須含有因子n^n;換句話說,f(n)+n-1>n^n,題目中給的f(n)可以用32位整數表示,那么n必然小于12!
            下面不用說什么了,暴力吧,肯定0MS了~不過為了完美,n^n我用了二進制快速冪~具體看代碼吧

            代碼:
             1 Source Code
             2 Problem: 1309        User: yzhw
             3 Memory: 392K        Time: 0MS
             4 Language: G++        Result: Accepted
             5 
             6     Source Code
             7 
             8     # include <cstdio>
             9     using namespace std;
            10     long long pow(int a,int b)
            11     {
            12         long long ans=1,t=a;
            13         while(b)
            14         {
            15             if(b&1) ans*=t;
            16             t*=t;
            17             b>>=1;
            18         }
            19         return ans;
            20     }
            21     int main()
            22     {
            23         //freopen("input.txt","r",stdin);
            24         int n;
            25         while(scanf("%d",&n)!=EOF&&n>=0)
            26         {
            27             int ans=-1,i;
            28             for(i=2;i<=12;i++)
            29             {
            30                 long long t=n;
            31                 t+=i-1;
            32                 long long t1=pow(i,i),t2=pow(i-1,i);
            33                 if(t%t1==0)
            34                 {
            35                     t=t/t1*t2-i+1;
            36                     if(t>=0&&t%i==0) ans=i;
            37                 }
            38             }
            39             if(ans==-1) printf("%d coconuts, no solution\n",n);
            40             else printf("%d coconuts, %d people and 1 monkey\n",n,ans);
            41         }
            42         return 0;
            43     }
            44 
            45 

            posted on 2011-07-19 00:10 yzhw 閱讀(246) 評論(0)  編輯 收藏 引用 所屬分類: numberic

            <2011年9月>
            28293031123
            45678910
            11121314151617
            18192021222324
            2526272829301
            2345678

            導航

            統計

            公告

            統計系統

            留言簿(1)

            隨筆分類(227)

            文章分類(2)

            OJ

            最新隨筆

            搜索

            積分與排名

            最新評論

            閱讀排行榜

            国产成人精品久久亚洲| 久久久午夜精品| 精品久久久一二三区| 69国产成人综合久久精品| 久久se精品一区二区影院| 久久99精品久久久久子伦| 久久艹国产| 人妻无码久久一区二区三区免费| 久久人搡人人玩人妻精品首页 | 久久久久亚洲AV成人网人人网站 | 97精品国产97久久久久久免费 | 色成年激情久久综合| 亚洲午夜无码久久久久| 成人资源影音先锋久久资源网| 久久久91人妻无码精品蜜桃HD| 久久精品国产一区二区三区日韩| 人妻无码中文久久久久专区| 精品久久久久中文字幕一区| 丰满少妇人妻久久久久久| 久久WWW免费人成一看片| 亚洲欧美精品一区久久中文字幕| 国产一久久香蕉国产线看观看| 天天影视色香欲综合久久| 无码国内精品久久人妻麻豆按摩| 久久精品国产久精国产| 色综合久久综合中文综合网| 一级做a爰片久久毛片毛片| 国产亚州精品女人久久久久久 | 国产午夜精品理论片久久影视| 亚洲香蕉网久久综合影视| 精品国产乱码久久久久久呢 | 国产精品久久99| 日韩精品久久久久久久电影蜜臀| 77777亚洲午夜久久多人| 2020久久精品亚洲热综合一本| 一本大道久久东京热无码AV| 热久久国产欧美一区二区精品| 亚洲国产精品狼友中文久久久| 亚洲精品视频久久久| 伊人久久综合无码成人网| 久久精品国产亚洲AV高清热|