• <ins id="pjuwb"></ins>
    <blockquote id="pjuwb"><pre id="pjuwb"></pre></blockquote>
    <noscript id="pjuwb"></noscript>
          <sup id="pjuwb"><pre id="pjuwb"></pre></sup>
            <dd id="pjuwb"></dd>
            <abbr id="pjuwb"></abbr>

            The 2010 ACM-ICPC Asia Chengdu Regional Contest Error Curves 三分法求凸函數極值

            Error Curves

            Time Limit: 2 Seconds      Memory Limit: 65536 KB

            Josephina is a clever girl and addicted to Machine Learning recently. She pays much attention to a method called Linear Discriminant Analysis, which has many interesting properties.

            In order to test the algorithm's efficiency, she collects many datasets. What's more, each data is divided into two parts: training data and test data. She gets the parameters of the model on training data and test the model on test data.

            To her surprise, she finds each dataset's test error curve is just a parabolic curve. A parabolic curve corresponds to a quadratic function. In mathematics, a quadratic function is a polynomial function of the form f(x) = ax2 + bx + c. The quadratic will degrade to linear function if a = 0.

            Quadric Function

            It's very easy to calculate the minimal error if there is only one test error curve. However, there are several datasets, which means Josephina will obtain many parabolic curves. Josephina wants to get the tuned parameters that make the best performance on all datasets. So she should take all error curves into account, i.e., she has to deal with many quadric functions and make a new error definition to represent the total error. Now, she focuses on the following new function's minimal which related to multiple quadric functions.

            The new function F(x) is defined as follow:

            F(x) = max(Si(x)), i = 1...n. The domain of x is [0, 1000]. Si(x) is a quadric function.

            Josephina wonders the minimum of F(x). Unfortunately, it's too hard for her to solve this problem. As a super programmer, can you help her?

            Input

            The input contains multiple test cases. The first line is the number of cases T (T < 100). Each case begins with a number n(n ≤ 10000). Following n lines, each line contains three integers a (0 ≤ a ≤ 100), b (|b| ≤ 5000), c (|c| ≤ 5000), which mean the corresponding coefficients of a quadratic function.

            Output

            For each test case, output the answer in a line. Round to 4 digits after the decimal point.

            Sample Input

            2
            1
            2 0 0
            2
            2 0 0
            2 -4 2
            

            Sample Output

            0.0000
            0.5000
            
            簡明題意:求一堆開口向上的二次函數在[0,1000]范圍上函數值最大值的最小值。
            二次函數的子集仍然為凸函數,所以可以用三分法求極值。精度實在很蛋疼,這題要求值域精確到1e-4,但是定義域沒說精確到多少,結果死wa,卡到1e-10終于過了。。
            貼代碼
             1# include <cstdio>
             2# include <cmath>
             3using namespace std;
             4int n;
             5int data[10001][3];
             6# define max(a,b) ((a)>(b)?(a):(b))
             7double cal(double mid)
             8{
             9   double res=-1e26;
            10   for(int i=0;i<n;i++)
            11     res=max(res,data[i][0]*mid*mid+data[i][1]*mid+data[i][2]);
            12   return res;
            13}

            14int main()
            15{
            16    int test;
            17    scanf("%d",&test);
            18    while(test--)
            19    {
            20       scanf("%d",&n);
            21       for(int i=0;i<n;i++)
            22         scanf("%d%d%d",&data[i][0],&data[i][1],&data[i][2]);
            23       double s=0.0,e=1000.0;
            24       double last=s;
            25       while(fabs(e-s)>1e-10)
            26       {
            27       
            28         double m1=(s+e)/2.0,m2=(m1+e)/2.0;
            29         if(cal(m1)<cal(m2))
            30           e=m2;
            31         else 
            32           s=m1;
            33       }

            34       printf("%.4lf\n",cal(e));
            35    }

            36    return 0;
            37}

            38
            39

            posted on 2010-11-16 00:50 yzhw 閱讀(802) 評論(0)  編輯 收藏 引用 所屬分類: numberic

            <2010年11月>
            31123456
            78910111213
            14151617181920
            21222324252627
            2829301234
            567891011

            導航

            統計

            公告

            統計系統

            留言簿(1)

            隨筆分類(227)

            文章分類(2)

            OJ

            最新隨筆

            搜索

            積分與排名

            最新評論

            閱讀排行榜

            久久精品欧美日韩精品| 久久精品aⅴ无码中文字字幕不卡 久久精品aⅴ无码中文字字幕重口 | 青青久久精品国产免费看| 久久国产香蕉视频| 亚洲午夜久久久久妓女影院| 欧美激情精品久久久久| 久久成人小视频| 久久亚洲精品视频| 久久国产色av免费看| 狠狠精品久久久无码中文字幕| 精品国产日韩久久亚洲| 97精品国产97久久久久久免费| 国产99久久久国产精品小说| 久久久免费精品re6| 久久亚洲精品国产亚洲老地址| 97精品久久天干天天天按摩| 欧美亚洲国产精品久久| 久久久精品视频免费观看| 国产一久久香蕉国产线看观看| 久久精品亚洲AV久久久无码| 久久精品国产一区二区| 国产精品久久国产精品99盘| 色综合久久久久无码专区| 狠狠色丁香久久婷婷综合图片| 丰满少妇人妻久久久久久4| 久久99精品国产麻豆宅宅| 久久久无码精品亚洲日韩按摩 | 精品久久人人爽天天玩人人妻 | 午夜天堂精品久久久久| 亚洲午夜无码久久久久小说| 久久婷婷五月综合97色直播| 久久国产精品无码网站| 国产亚洲精午夜久久久久久| 国内精品久久久久久中文字幕| 99精品伊人久久久大香线蕉| 久久国产免费观看精品| 99久久国产综合精品网成人影院| 国产一区二区三区久久| 久久久91人妻无码精品蜜桃HD| 91精品国产91久久久久久蜜臀 | 精品久久久无码人妻中文字幕豆芽 |