在C語言中,結構是一種復合數據類型,其構成元素既可以是基本數據類型(如int、long、float等)的變量,也可
以是一些復合數據類型(如數組、結構、聯合等)的數據單元。在結構中,編譯器為結構的每個成員按其自然對界(alignment)條件分配空間。各個成員
按照它們被聲明的順序在內存中順序存儲,第一個成員的地址和整個結構的地址相同。
例如,下面的結構各成員空間分配情況:
struct test
{
char x1;
short x2;
float x3;
char x4;
};
結構的第一個成員x1,其偏移地址為0,占據了第1個字節。第二個成員x2為short類型,其起始地址必須2字節對界,因此,編譯器在x2和x1之間填
充了一個空字節。結構的第三個成員x3和第四個成員x4恰好落在其自然對界地址上,在它們前面不需要額外的填充字節。在test結構中,成員x3要求4字
節對界,是該結構所有成員中要求的最大對界單元,因而test結構的自然對界條件為4字節,編譯器在成員x4后面填充了3個空字節。整個結構所占據空間為
12字節。 更改C編譯器的缺省字節對齊方式
在缺省情況下,C編譯器為每一個變量或是數據單元按其自然對界條件分配空間。一般地,可以通過下面的方法來改變缺省的對界條件:
· 使用偽指令#pragma pack (n),C編譯器將按照n個字節對齊。
· 使用偽指令#pragma pack (),取消自定義字節對齊方式。
另外,還有如下的一種方式:
· __attribute((aligned (n))),讓所作用的結構成員對齊在n字節自然邊界上。如果結構中有成員的長度大于n,則按照最大成員的長度來對齊。
· __attribute__ ((packed)),取消結構在編譯過程中的優化對齊,按照實際占用字節數進行對齊。
以上的n = 1, 2, 4, 8, 16... 第一種方式較為常見。
應用實例
在網絡協議編程中,經常會處理不同協議的數據報文。一種方法是通過指針偏移的方法來得到各種信息,但這樣做不僅編程復雜,而且一旦協議有變化,程序修改
起來也比較麻煩。在了解了編譯器對結構空間的分配原則之后,我們完全可以利用這一特性定義自己的協議結構,通過訪問結構的成員來獲取各種信息。這樣做,不
僅簡化了編程,而且即使協議發生變化,我們也只需修改協議結構的定義即可,其它程序無需修改,省時省力。下面以TCP協議首部為例,說明如何定義協議結
構。其協議結構定義如下:
#pragma pack(1) // 按照1字節方式進行對齊
struct TCPHEADER
{
short SrcPort; // 16位源端口號
short DstPort; // 16位目的端口號
int SerialNo; // 32位序列號
int AckNo; // 32位確認號
unsigned char HaderLen : 4; // 4位首部長度
unsigned char Reserved1 : 4; // 保留6位中的4位
unsigned char Reserved2 : 2; // 保留6位中的2位
unsigned char URG : 1;
unsigned char ACK : 1;
unsigned char PSH : 1;
unsigned char RST : 1;
unsigned char SYN : 1;
unsigned char FIN : 1;
short WindowSize; // 16位窗口大小
short TcpChkSum; // 16位TCP檢驗和
short UrgentPointer; // 16位緊急指針
};
#pragma pack() // 取消1字節對齊方式
Trackback: http://tb.blog.csdn.net/TrackBack.aspx?PostId=300583