• <ins id="pjuwb"></ins>
    <blockquote id="pjuwb"><pre id="pjuwb"></pre></blockquote>
    <noscript id="pjuwb"></noscript>
          <sup id="pjuwb"><pre id="pjuwb"></pre></sup>
            <dd id="pjuwb"></dd>
            <abbr id="pjuwb"></abbr>

            poj 2524 Ubiquitous Religions 【并查集】

            Ubiquitous Religions
            Time Limit: 5000MS Memory Limit: 65536K
            Total Submissions: 12445 Accepted: 5900

            Description

            There are so many different religions in the world today that it is difficult to keep track of them all. You are interested in finding out how many different religions students in your university believe in.

            You know that there are n students in your university (0 < n <= 50000). It is infeasible for you to ask every student their religious beliefs. Furthermore, many students are not comfortable expressing their beliefs. One way to avoid these problems is to ask m (0 <= m <= n(n-1)/2) pairs of students and ask them whether they believe in the same religion (e.g. they may know if they both attend the same church). From this data, you may not know what each person believes in, but you can get an idea of the upper bound of how many different religions can be possibly represented on campus. You may assume that each student subscribes to at most one religion.

            Input

            The input consists of a number of cases. Each case starts with a line specifying the integers n and m. The next m lines each consists of two integers i and j, specifying that students i and j believe in the same religion. The students are numbered 1 to n. The end of input is specified by a line in which n = m = 0.

            Output

            For each test case, print on a single line the case number (starting with 1) followed by the maximum number of different religions that the students in the university believe in.

            Sample Input

            10 9
            1 2
            1 3
            1 4
            1 5
            1 6
            1 7
            1 8
            1 9
            1 10
            10 4
            2 3
            4 5
            4 8
            5 8
            0 0
            

            Sample Output

            Case 1: 1
            Case 2: 7
            第一個并查集程序,最小生成樹不算。
             n個點,給你m條邊,求最大能有多少個連通分量。
            #include<iostream>
            using namespace std;
            const int MAX=50001;
            int fa[MAX];

            int find(int x)
            {
                
            return fa[x]==x?x:find(fa[x]);
            }

            void Union(int x, int y)
            {
                 fa[find(x)]
            =find(y);
            }
            int main()
            {
                
            int n,m;
                
            for(int tt=1; ; tt++)
                { 
                          cin
            >>n>>m;
                         
            if( n==0&&m==0)break;
                         
                         
            for(int i=1; i<=n; i++)
                                 fa[i]
            =i; 
                                 
                         
            int max=n;              
                         
            for(int i=1,s,t; i<=m; i++)
                                 {
                                     cin
            >>s>>t;
                                     
            if(find(s)!=find(t))max=max-1;
                                     Union(s,t);              
                                 }
                                 
                         cout
            <<"Case "<<tt<<':'<<' '<<max<<endl;
                         
                }
                
                system(
            "pause");    
                
            return 0;
            }


            posted on 2010-08-26 19:20 田兵 閱讀(319) 評論(0)  編輯 收藏 引用 所屬分類: 算法筆記

            <2010年8月>
            25262728293031
            1234567
            891011121314
            15161718192021
            22232425262728
            2930311234

            導(dǎo)航

            統(tǒng)計

            常用鏈接

            留言簿(2)

            隨筆分類(65)

            隨筆檔案(65)

            文章檔案(2)

            ACM

            搜索

            積分與排名

            最新隨筆

            最新評論

            閱讀排行榜

            亚洲精品乱码久久久久久按摩 | 91精品婷婷国产综合久久| 久久久久亚洲AV无码网站| 国内精品久久久久影院一蜜桃| 国产精品99久久精品| 久久99国产精一区二区三区| 久久久精品人妻无码专区不卡| 久久亚洲AV无码精品色午夜麻豆| 久久99国产精品尤物| 久久精品亚洲福利| 97精品伊人久久大香线蕉app| 欧美日韩精品久久久久| 久久精品国产亚洲AV电影| 久久99久久无码毛片一区二区 | 久久精品亚洲福利| 久久久免费精品re6| 久久国产成人| 亚洲综合精品香蕉久久网97| 97精品伊人久久久大香线蕉| 久久91这里精品国产2020| 国产午夜久久影院| 久久男人Av资源网站无码软件| 亚洲国产日韩欧美久久| 国产精自产拍久久久久久蜜 | 热久久这里只有精品| 久久久SS麻豆欧美国产日韩| 久久久久18| 精品久久久久久无码免费| 久久久国产精品网站| 久久久久久国产精品免费无码| 99精品久久精品一区二区| 久久久久亚洲av成人无码电影| 国产精品九九久久免费视频 | 久久久久亚洲AV成人网人人网站| 热久久国产精品| 亚洲成人精品久久| 91超碰碰碰碰久久久久久综合| 2021少妇久久久久久久久久| 久久久久无码精品国产| 九九精品99久久久香蕉| 国产综合久久久久久鬼色|