• <ins id="pjuwb"></ins>
    <blockquote id="pjuwb"><pre id="pjuwb"></pre></blockquote>
    <noscript id="pjuwb"></noscript>
          <sup id="pjuwb"><pre id="pjuwb"></pre></sup>
            <dd id="pjuwb"></dd>
            <abbr id="pjuwb"></abbr>

            poj 2524 Ubiquitous Religions 【并查集】

            Ubiquitous Religions
            Time Limit: 5000MS Memory Limit: 65536K
            Total Submissions: 12445 Accepted: 5900

            Description

            There are so many different religions in the world today that it is difficult to keep track of them all. You are interested in finding out how many different religions students in your university believe in.

            You know that there are n students in your university (0 < n <= 50000). It is infeasible for you to ask every student their religious beliefs. Furthermore, many students are not comfortable expressing their beliefs. One way to avoid these problems is to ask m (0 <= m <= n(n-1)/2) pairs of students and ask them whether they believe in the same religion (e.g. they may know if they both attend the same church). From this data, you may not know what each person believes in, but you can get an idea of the upper bound of how many different religions can be possibly represented on campus. You may assume that each student subscribes to at most one religion.

            Input

            The input consists of a number of cases. Each case starts with a line specifying the integers n and m. The next m lines each consists of two integers i and j, specifying that students i and j believe in the same religion. The students are numbered 1 to n. The end of input is specified by a line in which n = m = 0.

            Output

            For each test case, print on a single line the case number (starting with 1) followed by the maximum number of different religions that the students in the university believe in.

            Sample Input

            10 9
            1 2
            1 3
            1 4
            1 5
            1 6
            1 7
            1 8
            1 9
            1 10
            10 4
            2 3
            4 5
            4 8
            5 8
            0 0
            

            Sample Output

            Case 1: 1
            Case 2: 7
            第一個并查集程序,最小生成樹不算。
             n個點,給你m條邊,求最大能有多少個連通分量。
            #include<iostream>
            using namespace std;
            const int MAX=50001;
            int fa[MAX];

            int find(int x)
            {
                
            return fa[x]==x?x:find(fa[x]);
            }

            void Union(int x, int y)
            {
                 fa[find(x)]
            =find(y);
            }
            int main()
            {
                
            int n,m;
                
            for(int tt=1; ; tt++)
                { 
                          cin
            >>n>>m;
                         
            if( n==0&&m==0)break;
                         
                         
            for(int i=1; i<=n; i++)
                                 fa[i]
            =i; 
                                 
                         
            int max=n;              
                         
            for(int i=1,s,t; i<=m; i++)
                                 {
                                     cin
            >>s>>t;
                                     
            if(find(s)!=find(t))max=max-1;
                                     Union(s,t);              
                                 }
                                 
                         cout
            <<"Case "<<tt<<':'<<' '<<max<<endl;
                         
                }
                
                system(
            "pause");    
                
            return 0;
            }


            posted on 2010-08-26 19:20 田兵 閱讀(319) 評論(0)  編輯 收藏 引用 所屬分類: 算法筆記

            <2010年8月>
            25262728293031
            1234567
            891011121314
            15161718192021
            22232425262728
            2930311234

            導航

            統計

            常用鏈接

            留言簿(2)

            隨筆分類(65)

            隨筆檔案(65)

            文章檔案(2)

            ACM

            搜索

            積分與排名

            最新隨筆

            最新評論

            閱讀排行榜

            精品久久久无码中文字幕| 国产成人精品综合久久久久| 久久夜色精品国产亚洲| 国产成人无码精品久久久免费 | 国产精品久久久久久五月尺| 中文字幕精品久久| 色婷婷久久综合中文久久蜜桃av| 狠狠色丁香久久婷婷综合_中 | 久久久精品人妻一区二区三区蜜桃 | 欧美久久天天综合香蕉伊| 婷婷久久久亚洲欧洲日产国码AV| 国产成人无码精品久久久性色| a高清免费毛片久久| 久久人妻少妇嫩草AV无码蜜桃| 久久久精品国产免大香伊| 国产成人久久久精品二区三区 | 亚洲伊人久久大香线蕉综合图片| 99国产欧美精品久久久蜜芽| 热久久最新网站获取| 66精品综合久久久久久久| 亚洲综合伊人久久综合| 欧美激情精品久久久久久久九九九| 午夜精品久久久内射近拍高清| 久久精品九九亚洲精品天堂| 亚洲级αV无码毛片久久精品| 国内精品欧美久久精品| 99久久精品国产免看国产一区| 久久精品日日躁夜夜躁欧美| 日韩一区二区三区视频久久| 国产精品视频久久| 精品国际久久久久999波多野| 午夜精品久久久久久| 日本亚洲色大成网站WWW久久| 久久综合九色综合久99| 国产精品久久久天天影视香蕉| 91麻精品国产91久久久久| 久久亚洲精品无码VA大香大香| 2020久久精品亚洲热综合一本| 久久国产精品波多野结衣AV| 久久精品国内一区二区三区| 亚洲香蕉网久久综合影视 |