• <ins id="pjuwb"></ins>
    <blockquote id="pjuwb"><pre id="pjuwb"></pre></blockquote>
    <noscript id="pjuwb"></noscript>
          <sup id="pjuwb"><pre id="pjuwb"></pre></sup>
            <dd id="pjuwb"></dd>
            <abbr id="pjuwb"></abbr>

            poj 2524 Ubiquitous Religions 【并查集】

            Ubiquitous Religions
            Time Limit: 5000MS Memory Limit: 65536K
            Total Submissions: 12445 Accepted: 5900

            Description

            There are so many different religions in the world today that it is difficult to keep track of them all. You are interested in finding out how many different religions students in your university believe in.

            You know that there are n students in your university (0 < n <= 50000). It is infeasible for you to ask every student their religious beliefs. Furthermore, many students are not comfortable expressing their beliefs. One way to avoid these problems is to ask m (0 <= m <= n(n-1)/2) pairs of students and ask them whether they believe in the same religion (e.g. they may know if they both attend the same church). From this data, you may not know what each person believes in, but you can get an idea of the upper bound of how many different religions can be possibly represented on campus. You may assume that each student subscribes to at most one religion.

            Input

            The input consists of a number of cases. Each case starts with a line specifying the integers n and m. The next m lines each consists of two integers i and j, specifying that students i and j believe in the same religion. The students are numbered 1 to n. The end of input is specified by a line in which n = m = 0.

            Output

            For each test case, print on a single line the case number (starting with 1) followed by the maximum number of different religions that the students in the university believe in.

            Sample Input

            10 9
            1 2
            1 3
            1 4
            1 5
            1 6
            1 7
            1 8
            1 9
            1 10
            10 4
            2 3
            4 5
            4 8
            5 8
            0 0
            

            Sample Output

            Case 1: 1
            Case 2: 7
            第一個(gè)并查集程序,最小生成樹不算。
             n個(gè)點(diǎn),給你m條邊,求最大能有多少個(gè)連通分量。
            #include<iostream>
            using namespace std;
            const int MAX=50001;
            int fa[MAX];

            int find(int x)
            {
                
            return fa[x]==x?x:find(fa[x]);
            }

            void Union(int x, int y)
            {
                 fa[find(x)]
            =find(y);
            }
            int main()
            {
                
            int n,m;
                
            for(int tt=1; ; tt++)
                { 
                          cin
            >>n>>m;
                         
            if( n==0&&m==0)break;
                         
                         
            for(int i=1; i<=n; i++)
                                 fa[i]
            =i; 
                                 
                         
            int max=n;              
                         
            for(int i=1,s,t; i<=m; i++)
                                 {
                                     cin
            >>s>>t;
                                     
            if(find(s)!=find(t))max=max-1;
                                     Union(s,t);              
                                 }
                                 
                         cout
            <<"Case "<<tt<<':'<<' '<<max<<endl;
                         
                }
                
                system(
            "pause");    
                
            return 0;
            }


            posted on 2010-08-26 19:20 田兵 閱讀(319) 評(píng)論(0)  編輯 收藏 引用 所屬分類: 算法筆記

            <2010年8月>
            25262728293031
            1234567
            891011121314
            15161718192021
            22232425262728
            2930311234

            導(dǎo)航

            統(tǒng)計(jì)

            常用鏈接

            留言簿(2)

            隨筆分類(65)

            隨筆檔案(65)

            文章檔案(2)

            ACM

            搜索

            積分與排名

            最新隨筆

            最新評(píng)論

            閱讀排行榜

            国产精品gz久久久| 久久久无码精品午夜| 精品熟女少妇a∨免费久久| 久久久精品午夜免费不卡| 国产精品久久久久蜜芽| 精品无码久久久久国产动漫3d| 69久久夜色精品国产69| 久久久久人妻一区精品| 97久久超碰成人精品网站| 久久婷婷人人澡人人| 久久综合久久久| 免费观看久久精彩视频| 久久99精品综合国产首页| 久久亚洲国产精品一区二区| 久久人人爽人人爽人人片AV高清| 久久99精品久久久久久秒播| 久久人人添人人爽添人人片牛牛| 97久久超碰国产精品2021| 亚洲欧美一区二区三区久久| 狠狠干狠狠久久| 中文字幕无码免费久久| 国产精品免费久久久久久久久| 久久夜色精品国产欧美乱| 亚洲欧美国产日韩综合久久| 久久精品国内一区二区三区| AV无码久久久久不卡蜜桃| 色婷婷久久久SWAG精品| 精品国产婷婷久久久| 青青青伊人色综合久久| 97久久超碰国产精品旧版| 亚洲AV无一区二区三区久久| 色播久久人人爽人人爽人人片AV| 久久久久香蕉视频| 热RE99久久精品国产66热| 久久久精品日本一区二区三区| 欧美久久综合性欧美| 久久香蕉一级毛片| 国内精品免费久久影院| 久久中文字幕视频、最近更新 | 久久精品免费一区二区| 久久精品国产精品亜洲毛片|