• <ins id="pjuwb"></ins>
    <blockquote id="pjuwb"><pre id="pjuwb"></pre></blockquote>
    <noscript id="pjuwb"></noscript>
          <sup id="pjuwb"><pre id="pjuwb"></pre></sup>
            <dd id="pjuwb"></dd>
            <abbr id="pjuwb"></abbr>

            poj 2524 Ubiquitous Religions 【并查集】

            Ubiquitous Religions
            Time Limit: 5000MS Memory Limit: 65536K
            Total Submissions: 12445 Accepted: 5900

            Description

            There are so many different religions in the world today that it is difficult to keep track of them all. You are interested in finding out how many different religions students in your university believe in.

            You know that there are n students in your university (0 < n <= 50000). It is infeasible for you to ask every student their religious beliefs. Furthermore, many students are not comfortable expressing their beliefs. One way to avoid these problems is to ask m (0 <= m <= n(n-1)/2) pairs of students and ask them whether they believe in the same religion (e.g. they may know if they both attend the same church). From this data, you may not know what each person believes in, but you can get an idea of the upper bound of how many different religions can be possibly represented on campus. You may assume that each student subscribes to at most one religion.

            Input

            The input consists of a number of cases. Each case starts with a line specifying the integers n and m. The next m lines each consists of two integers i and j, specifying that students i and j believe in the same religion. The students are numbered 1 to n. The end of input is specified by a line in which n = m = 0.

            Output

            For each test case, print on a single line the case number (starting with 1) followed by the maximum number of different religions that the students in the university believe in.

            Sample Input

            10 9
            1 2
            1 3
            1 4
            1 5
            1 6
            1 7
            1 8
            1 9
            1 10
            10 4
            2 3
            4 5
            4 8
            5 8
            0 0
            

            Sample Output

            Case 1: 1
            Case 2: 7
            第一個(gè)并查集程序,最小生成樹不算。
             n個(gè)點(diǎn),給你m條邊,求最大能有多少個(gè)連通分量。
            #include<iostream>
            using namespace std;
            const int MAX=50001;
            int fa[MAX];

            int find(int x)
            {
                
            return fa[x]==x?x:find(fa[x]);
            }

            void Union(int x, int y)
            {
                 fa[find(x)]
            =find(y);
            }
            int main()
            {
                
            int n,m;
                
            for(int tt=1; ; tt++)
                { 
                          cin
            >>n>>m;
                         
            if( n==0&&m==0)break;
                         
                         
            for(int i=1; i<=n; i++)
                                 fa[i]
            =i; 
                                 
                         
            int max=n;              
                         
            for(int i=1,s,t; i<=m; i++)
                                 {
                                     cin
            >>s>>t;
                                     
            if(find(s)!=find(t))max=max-1;
                                     Union(s,t);              
                                 }
                                 
                         cout
            <<"Case "<<tt<<':'<<' '<<max<<endl;
                         
                }
                
                system(
            "pause");    
                
            return 0;
            }


            posted on 2010-08-26 19:20 田兵 閱讀(319) 評(píng)論(0)  編輯 收藏 引用 所屬分類: 算法筆記

            <2010年8月>
            25262728293031
            1234567
            891011121314
            15161718192021
            22232425262728
            2930311234

            導(dǎo)航

            統(tǒng)計(jì)

            常用鏈接

            留言簿(2)

            隨筆分類(65)

            隨筆檔案(65)

            文章檔案(2)

            ACM

            搜索

            積分與排名

            最新隨筆

            最新評(píng)論

            閱讀排行榜

            久久99国产乱子伦精品免费| avtt天堂网久久精品| 久久精品亚洲男人的天堂| 一本伊大人香蕉久久网手机| 久久精品免费大片国产大片| 成人综合久久精品色婷婷| 亚洲精品无码久久久久sm| 国产精品一久久香蕉国产线看观看| 国内精品久久久久影院一蜜桃| 久久国产精品成人免费| 亚洲欧美精品一区久久中文字幕| 无码人妻少妇久久中文字幕蜜桃| 国产精品福利一区二区久久| 亚洲国产精品无码久久青草 | 综合网日日天干夜夜久久| 久久SE精品一区二区| 国产午夜福利精品久久| 无码国产69精品久久久久网站| 国内精品伊人久久久久| 久久只这里是精品66| 国产99久久久久久免费看| 欧美大香线蕉线伊人久久| 亚洲国产精品狼友中文久久久 | 国产—久久香蕉国产线看观看| 亚洲国产成人久久综合野外| 久久九九青青国产精品| 久久综合亚洲色一区二区三区| 伊人久久综在合线亚洲2019| 久久亚洲私人国产精品vA| 国产一区二区久久久| 久久综合五月丁香久久激情| 久久精品成人免费观看97| 久久99精品国产99久久6男男| 无码人妻精品一区二区三区久久久| 久久久久亚洲av成人无码电影| 国产精品欧美久久久天天影视| 久久国产高潮流白浆免费观看| 亚洲∧v久久久无码精品| 久久丫忘忧草产品| 久久精品国产99国产精品亚洲| 奇米影视7777久久精品人人爽|