Socket(套接字)
◆先看定義:
typedef unsigned int u_int;
typedef u_int SOCKET;
◆Socket相當于進行網絡通信兩端的插座,只要對方的Socket和自己的Socket有通信聯接,雙方就可以發送和接收數據了。其定義類似于文件句柄的定義。
◆Socket有五種不同的類型:
1、流式套接字(stream socket)
定義:
#define SOCK_STREAM 1
流式套接字提供了雙向、有序的、無重復的以及無記錄邊界的數據流服務,適合處理大量數據。它是面向聯結的,必須建立數據傳輸鏈路,同時還必須對傳輸的數據進行驗證,確保數據的準確性。因此,系統開銷較大。
2、 數據報套接字(datagram socket)
定義:
#define SOCK_DGRAM 2
數據報套接字也支持雙向的數據流,但不保證傳輸數據的準確性,但保留了記錄邊界。由于數據報套接字是無聯接的,例如廣播時的聯接,所以并不保證接收端是否正在偵聽。數據報套接字傳輸效率比較高。
3、原始套接字(raw-protocol interface)
定義:
#define SOCK_RAW 3
原始套接字保存了數據包中的完整IP頭,前面兩種套接字只能收到用戶數據。因此可以通過原始套接字對數據進行分析。
其它兩種套接字不常用,這里就不介紹了。
◆Socket開發所必須需要的文件(以WinSock V2.0為例):
頭文件:Winsock2.h
庫文件:WS2_32.LIB
動態庫:W32_32.DLL
一些重要的定義
1、數據類型的基本定義:這個大家一看就懂。
typedef unsigned char u_char;
typedef unsigned short u_short;
typedef unsigned int u_int;
typedef unsigned long u_long;
2、 網絡地址的數據結構,有一個老的和一個新的的,請大家留意,如果想知道為什么,
請發郵件給Bill Gate。其實就是計算機的IP地址,不過一般不用用點分開的IP地
址,當然也提供一些轉換函數。
◆ 舊的網絡地址結構的定義,為一個4字節的聯合:
struct in_addr {
union {
struct { u_char s_b1,s_b2,s_b3,s_b4; } S_un_b;
struct { u_short s_w1,s_w2; } S_un_w;
u_long S_addr;
} S_un;
#define s_addr S_un.S_addr /* can be used for most tcp & ip code */
//下面幾行省略,反正沒什么用處。
};
其實完全不用這么麻煩,請看下面:
◆ 新的網絡地址結構的定義:
非常簡單,就是一個無符號長整數 unsigned long。舉個例子:IP地址為127.0.0.1的網絡地址是什么呢?請看定義:
#define INADDR_LOOPBACK 0x7f000001
3、 套接字地址結構
(1)、sockaddr結構:
struct sockaddr {
u_short sa_family; /* address family */
char sa_data[14]; /* up to 14 bytes of direct address */
};
sa_family為網絡地址類型,一般為AF_INET,表示該socket在Internet域中進行通信,該地址結構隨選擇的協議的不同而變化,因此一般情況下另一個與該地址結構大小相同的sockaddr_in結構更為常用,sockaddr_in結構用來標識TCP/IP協議下的地址。換句話說,這個結構是通用socket地址結構,而下面的sockaddr_in是專門針對Internet域的socket地址結構。
(2)、sockaddr_in結構
struct sockaddr_in {
short sin_family;
u_short sin_port;
struct in_addr sin_addr;
char sin_zero[8];
};
sin _family為網絡地址類型,必須設定為AF_INET。sin_port為服務端口,注意不要使用已固定的服務端口,如HTTP的端口80等。如果端口設置為0,則系統會自動分配一個唯一端口。sin_addr為一個unsigned long的IP地址。sin_zero為填充字段,純粹用來保證結構的大小。
◆ 將常用的用點分開的IP地址轉換為unsigned long類型的IP地址的函數:
unsigned long inet_addr(const char FAR * cp )
用法:
unsigned long addr=inet_addr("192.1.8.84")
◆ 如果將sin_addr設置為INADDR_ANY,則表示所有的IP地址,也即所有的計算機。
#define INADDR_ANY (u_long)0x00000000
4、 主機地址:
先看定義:
struct hostent {
char FAR * h_name; /* official name of host */
char FAR * FAR * h_aliases; /* alias list */
short h_addrtype; /* host address type */
short h_length; /* length of address */
char FAR * FAR * h_addr_list; /* list of addresses */
#define h_addr h_addr_list[0] /* address, for backward compat */
};
h_name為主機名字。
h_aliases為主機別名列表。
h_addrtype為地址類型。
h_length為地址類型。
h_addr_list為IP地址,如果該主機有多個網卡,就包括地址的列表。
另外還有幾個類似的結構,這里就不一一介紹了。
5、 常見TCP/IP協議的定義:
#define IPPROTO_IP 0
#define IPPROTO_ICMP 1
#define IPPROTO_IGMP 2
#define IPPROTO_TCP 6
#define IPPROTO_UDP 17
#define IPPROTO_RAW 255
具體是什么協議,大家一看就知道了。
套接字的屬性
為了靈活使用套接字,我們可以對它的屬性進行設定。
1、 屬性內容:
//允許調試輸出
#define SO_DEBUG 0x0001 /* turn on debugging info recording */
//是否監聽模式
#define SO_ACCEPTCONN 0x0002 /* socket has had listen() */
//套接字與其他套接字的地址綁定
#define SO_REUSEADDR 0x0004 /* allow local address reuse */
//保持連接
#define SO_KEEPALIVE 0x0008 /* keep connections alive */
//不要路由出去
#define SO_DONTROUTE 0x0010 /* just use interface addresses */
//設置為廣播
#define SO_BROADCAST 0x0020 /* permit sending of broadcast msgs */
//使用環回不通過硬件
#define SO_USELOOPBACK 0x0040 /* bypass hardware when possible */
//當前拖延值
#define SO_LINGER 0x0080 /* linger on close if data present */
//是否加入帶外數據
#define SO_OOBINLINE 0x0100 /* leave received OOB data in line */
//禁用LINGER選項
#define SO_DONTLINGER (int)(~SO_LINGER)
//發送緩沖區長度
#define SO_SNDBUF 0x1001 /* send buffer size */
//接收緩沖區長度
#define SO_RCVBUF 0x1002 /* receive buffer size */
//發送超時時間
#define SO_SNDTIMEO 0x1005 /* send timeout */
//接收超時時間
#define SO_RCVTIMEO 0x1006 /* receive timeout */
//錯誤狀態
#define SO_ERROR 0x1007 /* get error status and clear */
//套接字類型
#define SO_TYPE 0x1008 /* get socket type */
2、 讀取socket屬性:
int getsockopt(SOCKET s, int level, int optname, char FAR * optval, int FAR * optlen)
s為欲讀取屬性的套接字。level為套接字選項的級別,大多數是特定協議和套接字專有的。如IP協議應為 IPPROTO_IP。
optname為讀取選項的名稱
optval為存放選項值的緩沖區指針。
optlen為緩沖區的長度
用法:
int ttl=0; //讀取TTL值
int rc = getsockopt( s, IPPROTO_IP, IP_TTL, (char *)&ttl, sizeof(ttl));
//來自MS platform SDK 2003
3、 設置socket屬性:
int setsockopt(SOCKET s,int level, int optname,const char FAR * optval, int optlen)
s為欲設置屬性的套接字。
level為套接字選項的級別,用法同上。
optname為設置選項的名稱
optval為存放選項值的緩沖區指針。
optlen為緩沖區的長度
用法:
int ttl=32; //設置TTL值
int rc = setsockopt( s, IPPROTO_IP, IP_TTL, (char *)&ttl, sizeof(ttl));
套接字的使用步驟
1、啟動Winsock:對Winsock DLL進行初始化,協商Winsock的版本支持并分配必要的
資源。(服務器端和客戶端)
int WSAStartup( WORD wVersionRequested, LPWSADATA lpWSAData )
wVersionRequested為打算加載Winsock的版本,一般如下設置:
wVersionRequested=MAKEWORD(2,0)
或者直接賦值:wVersionRequested=2
LPWSADATA為初始化Socket后加載的版本的信息,定義如下:
typedef struct WSAData {
WORD wVersion;
WORD wHighVersion;
char szDescription[WSADESCRIPTION_LEN+1];
char szSystemStatus[WSASYS_STATUS_LEN+1];
unsigned short iMaxSockets;
unsigned short iMaxUdpDg;
char FAR * lpVendorInfo;
} WSADATA, FAR * LPWSADATA;
如果加載成功后數據為:
wVersion=2表示加載版本為2.0。
wHighVersion=514表示當前系統支持socket最高版本為2.2。
szDescription="WinSock 2.0"
szSystemStatus="Running"表示正在運行。
iMaxSockets=0表示同時打開的socket最大數,為0表示沒有限制。
iMaxUdpDg=0表示同時打開的數據報最大數,為0表示沒有限制。
lpVendorInfo沒有使用,為廠商指定信息預留。
該函數使用方法:
WORD wVersion=MAKEWORD(2,0);
WSADATA wsData;
int nResult= WSAStartup(wVersion,&wsData);
if(nResult !=0)
{
//錯誤處理
}
2、創建套接字:(服務器端和客戶端)
SOCKET socket( int af, int type, int protocol );
af為網絡地址類型,一般為AF_INET,表示在Internet域中使用。
type為套接字類型,前面已經介紹了。
protocol為指定網絡協議,一般為IPPROTO_IP。
用法:
SOCKET sock=socket(AF_INET,SOCK_STREAM,IPPROTO_IP);
if(sock==INVALID_SOCKET)
{
//錯誤處理
}
3、套接字的綁定:將本地地址綁定到所創建的套接字上。(服務器端和客戶端)
int bind( SOCKET s, const struct sockaddr FAR * name, int namelen )
s為已經創建的套接字。
name為socket地址結構,為sockaddr結構,如前面討論的,我們一般使用sockaddr_in
結構,在使用再強制轉換為sockaddr結構。
namelen為地址結構的長度。
用法:
sockaddr_in addr;
addr. sin_family=AF_INET;
addr. sin_port= htons(0); //保證字節順序
addr. sin_addr.s_addr= inet_addr("192.1.8.84")
int nResult=bind(s,(sockaddr*)&addr,sizeof(sockaddr));
if(nResult==SOCKET_ERROR)
{
//錯誤處理
}
4、 套接字的監聽:(服務器端)
int listen(SOCKET s, int backlog )
s為一個已綁定但未聯接的套接字。
backlog為指定正在等待聯接的最大隊列長度,這個參數非常重要,因為服務器一般可
以提供多個連接。
用法:
int nResult=listen(s,5) //最多5個連接
if(nResult==SOCKET_ERROR)
{
//錯誤處理
}
5、套接字等待連接::(服務器端)
SOCKET accept( SOCKET s, struct sockaddr FAR * addr, int FAR * addrlen )
s為處于監聽模式的套接字。
sockaddr為接收成功后返回客戶端的網絡地址。
addrlen為網絡地址的長度。
用法:
sockaddr_in addr;
SOCKET s_d=accept(s,(sockaddr*)&addr,sizeof(sockaddr));
if(s==INVALID_SOCKET)
{
//錯誤處理
}
6、套接字的連結:將兩個套接字連結起來準備通信。(客戶端)
int connect(SOCKET s, const struct sockaddr FAR * name, int namelen )
s為欲連結的已創建的套接字。
name為欲連結的socket地址。
namelen為socket地址的結構的長度。
用法:
sockaddr_in addr;
addr. sin_family=AF_INET;
addr. sin_port=htons(0); //保證字節順序
addr. sin_addr.s_addr= htonl(INADDR_ANY) //保證字節順序
int nResult=connect(s,(sockaddr*)&addr,sizeof(sockaddr));
if(nResult==SOCKET_ERROR)
{
//錯誤處理
}
7、套接字發送數據:(服務器端和客戶端)
int send(SOCKET s, const char FAR * buf, int len, int flags )
s為服務器端監聽的套接字。
buf為欲發送數據緩沖區的指針。
len為發送數據緩沖區的長度。
flags為數據發送標記。
返回值為發送數據的字符數。
◆這里講一下這個發送標記,下面8中討論的接收標記也一樣:
flag取值必須為0或者如下定義的組合:0表示沒有特殊行為。
#define MSG_OOB 0x1 /* process out-of-band data */
#define MSG_PEEK 0x2 /* peek at incoming message */
#define MSG_DONTROUTE 0x4 /* send without using routing tables */
MSG_OOB表示數據應該帶外發送,所謂帶外數據就是TCP緊急數據。
MSG_PEEK表示使有用的數據復制到緩沖區內,但并不從系統緩沖區內刪除。
MSG_DONTROUTE表示不要將包路由出去。
用法:
char buf[]="xiaojin";
int nResult=send(s,buf,strlen(buf));
if(nResult==SOCKET_ERROR)
{
//錯誤處理
}
8、 套接字的數據接收:(客戶端)
int recv( SOCKET s, char FAR * buf, int len, int flags )
s為準備接收數據的套接字。
buf為準備接收數據的緩沖區。
len為準備接收數據緩沖區的大小。
flags為數據接收標記。
返回值為接收的數據的字符數。
用法:
char mess[1000];
int nResult =recv(s,mess,1000,0);
if(nResult==SOCKET_ERROR)
{
//錯誤處理
}
9、中斷套接字連接:通知服務器端或客戶端停止接收和發送數據。(服務器端和客戶端)
int shutdown(SOCKET s, int how)
s為欲中斷連接的套接字。
How為描述禁止哪些操作,取值為:SD_RECEIVE、SD_SEND、SD_BOTH。
#define SD_RECEIVE 0x00
#define SD_SEND 0x01
#define SD_BOTH 0x02
用法:
int nResult= shutdown(s,SD_BOTH);
if(nResult==SOCKET_ERROR)
{
//錯誤處理
}
10、 關閉套接字:釋放所占有的資源。(服務器端和客戶端)
int closesocket( SOCKET s )
s為欲關閉的套接字。
用法:
int nResult=closesocket(s);
if(nResult==SOCKET_ERROR)
{
//錯誤處理
}
1、讀取當前錯誤值:每次發生錯誤時,如果要對具體問題進行處理,那么就應該調用這個函數取得錯誤代碼。
int WSAGetLastError(void );
#define h_errno WSAGetLastError()
錯誤值請自己閱讀Winsock2.h。
2、將主機的unsigned long值轉換為網絡字節順序(32位):為什么要這樣做呢?因為不同的計算機使用不同的字節順序存儲數據。因此任何從Winsock函數對IP地址和端口號的引用和傳給Winsock函數的IP地址和端口號均時按照網絡順序組織的。
u_long htonl(u_long hostlong);
舉例:htonl(0)=0
htonl(80)= 1342177280
3、將unsigned long數從網絡字節順序轉換位主機字節順序,是上面函數的逆函數。
u_long ntohl(u_long netlong);
舉例:ntohl(0)=0
ntohl(1342177280)= 80
4、將主機的unsigned short值轉換為網絡字節順序(16位):原因同2:
u_short htons(u_short hostshort);
舉例:htonl(0)=0
htonl(80)= 20480
5、將unsigned short數從網絡字節順序轉換位主機字節順序,是上面函數的逆函數。
u_short ntohs(u_short netshort);
舉例:ntohs(0)=0
ntohsl(20480)= 80
6、將用點分割的IP地址轉換位一個in_addr結構的地址,這個結構的定義見筆記(一),實際上就是一個unsigned long值。計算機內部處理IP地址可是不認識如192.1.8.84之類的數據。
unsigned long inet_addr( const char FAR * cp );
舉例:inet_addr("192.1.8.84")=1409810880
inet_addr("127.0.0.1")= 16777343
如果發生錯誤,函數返回INADDR_NONE值。
7、將網絡地址轉換位用點分割的IP地址,是上面函數的逆函數。
char FAR * inet_ntoa( struct in_addr in );
舉例:char * ipaddr=NULL;
char addr[20];
in_addr inaddr;
inaddr. s_addr=16777343;
ipaddr= inet_ntoa(inaddr);
strcpy(addr,ipaddr);
這樣addr的值就變為127.0.0.1。
注意意不要修改返回值或者進行釋放動作。如果函數失敗就會返回NULL值。
8、獲取套接字的本地地址結構:
int getsockname(SOCKET s, struct sockaddr FAR * name, int FAR * namelen );
s為套接字
name為函數調用后獲得的地址值
namelen為緩沖區的大小。
9、獲取與套接字相連的端地址結構:
int getpeername(SOCKET s, struct sockaddr FAR * name, int FAR * namelen );
s為套接字
name為函數調用后獲得的端地址值
namelen為緩沖區的大小。
10、獲取計算機名:
int gethostname( char FAR * name, int namelen );
name是存放計算機名的緩沖區
namelen是緩沖區的大小
用法:
char szName[255];
memset(szName,0,255);
if(gethostname(szName,255)==SOCKET_ERROR)
{
//錯誤處理
}
返回值為:szNmae="xiaojin"
11、根據計算機名獲取主機地址:
struct hostent FAR * gethostbyname( const char FAR * name );
name為計算機名。
用法:
hostent * host;
char* ip;
host= gethostbyname("xiaojin");
if(host->h_addr_list[0])
{
struct in_addr addr;
memmove(&addr, host->h_addr_list[0],4);
//獲得標準IP地址
ip=inet_ ntoa (addr);
}
返回值為:hostent->h_name="xiaojin"
hostent->h_addrtype=2 //AF_INET
hostent->length=4
ip="127.0.0.1"
Winsock 的I/O操作:
1、 兩種I/O模式
- 阻塞模式:執行I/O操作完成前會一直進行等待,不會將控制權交給程序。套接字 默認為阻塞模式。可以通過多線程技術進行處理。
- 非阻塞模式:執行I/O操作時,Winsock函數會返回并交出控制權。這種模式使用 起來比較復雜,因為函數在沒有運行完成就進行返回,會不斷地返回 WSAEWOULDBLOCK錯誤。但功能強大。
為了解決這個問題,提出了進行I/O操作的一些I/O模型,下面介紹最常見的三種:
2、select模型:
通過調用select函數可以確定一個或多個套接字的狀態,判斷套接字上是否有數據,或
者能否向一個套接字寫入數據。
int select( int nfds, fd_set FAR * readfds, fd_set FAR * writefds,
fd_set FAR *exceptfds, const struct timeval FAR * timeout );
◆先來看看涉及到的結構的定義:
a、 d_set結構:
#define FD_SETSIZE 64?
typedef struct fd_set {
u_int fd_count; /* how many are SET? */
SOCKET fd_array[FD_SETSIZE]; /* an array of SOCKETs */
} fd_set;
fd_count為已設定socket的數量
fd_array為socket列表,FD_SETSIZE為最大socket數量,建議不小于64。這是微軟建
議的。
B、timeval結構:
struct timeval {
long tv_sec; /* seconds */
long tv_usec; /* and microseconds */
};
tv_sec為時間的秒值。
tv_usec為時間的毫秒值。
這個結構主要是設置select()函數的等待值,如果將該結構設置為(0,0),則select()函數
會立即返回。
◆再來看看select函數各參數的作用:
- nfds:沒有任何用處,主要用來進行系統兼容用,一般設置為0。
- readfds:等待可讀性檢查的套接字組。
- writefds;等待可寫性檢查的套接字組。
- exceptfds:等待錯誤檢查的套接字組。
- timeout:超時時間。
- 函數失敗的返回值:調用失敗返回SOCKET_ERROR,超時返回0。
readfds、writefds、exceptfds三個變量至少有一個不為空,同時這個不為空的套接字組
種至少有一個socket,道理很簡單,否則要select干什么呢。 舉例:測試一個套接字是否可讀:
fd_set fdread;
//FD_ZERO定義
// #define FD_ZERO(set) (((fd_set FAR *)(set))->fd_count=0)
FD_ZERO(&fdread);
FD_SET(s,&fdread); //加入套接字,詳細定義請看winsock2.h
if(select(0,%fdread,NULL,NULL,NULL)>0
{
//成功
if(FD_ISSET(s,&fread) //是否存在fread中,詳細定義請看winsock2.h
{
//是可讀的
}
}
◆I/O操作函數:主要用于獲取與套接字相關的操作參數。
int ioctlsocket(SOCKET s, long cmd, u_long FAR * argp );
s為I/O操作的套接字。
cmd為對套接字的操作命令。
argp為命令所帶參數的指針。
常見的命令:
//確定套接字自動讀入的數據量
#define FIONREAD _IOR(''''f'''', 127, u_long) /* get # bytes to read */
//允許或禁止套接字的非阻塞模式,允許為非0,禁止為0
#define FIONBIO _IOW(''''f'''', 126, u_long) /* set/clear non-blocking i/o */
//確定是否所有帶外數據都已被讀入
#define SIOCATMARK _IOR(''''s'''', 7, u_long) /* at oob mark? */
3、WSAAsynSelect模型:
WSAAsynSelect模型也是一個常用的異步I/O模型。應用程序可以在一個套接字上接收以
WINDOWS消息為基礎的網絡事件通知。該模型的實現方法是通過調用WSAAsynSelect函
數 自動將套接字設置為非阻塞模式,并向WINDOWS注冊一個或多個網絡時間,并提供一
個通知時使用的窗口句柄。當注冊的事件發生時,對應的窗口將收到一個基于消息的通知。
int WSAAsyncSelect( SOCKET s, HWND hWnd, u_int wMsg, long lEvent);
s為需要事件通知的套接字
hWnd為接收消息的窗口句柄
wMsg為要接收的消息
lEvent為掩碼,指定應用程序感興趣的網絡事件組合,主要如下:
#define FD_READ_BIT 0
#define FD_READ (1 << FD_READ_BIT)
#define FD_WRITE_BIT 1
#define FD_WRITE (1 << FD_WRITE_BIT)
#define FD_OOB_BIT 2
#define FD_OOB (1 << FD_OOB_BIT)
#define FD_ACCEPT_BIT 3
#define FD_ACCEPT (1 << FD_ACCEPT_BIT)
#define FD_CONNECT_BIT 4
#define FD_CONNECT (1 << FD_CONNECT_BIT)
#define FD_CLOSE_BIT 5
#define FD_CLOSE (1 << FD_CLOSE_BIT)
用法:要接收讀寫通知:
int nResult= WSAAsyncSelect(s,hWnd,wMsg,FD_READ|FD_WRITE);
if(nResult==SOCKET_ERROR)
{
//錯誤處理
}
取消通知:
int nResult= WSAAsyncSelect(s,hWnd,0,0);
當應用程序窗口hWnd收到消息時,wMsg.wParam參數標識了套接字,lParam的低字標明
了網絡事件,高字則包含錯誤代碼。
4、WSAEventSelect模型
WSAEventSelect模型類似WSAAsynSelect模型,但最主要的區別是網絡事件發生時會被發
送到一個事件對象句柄,而不是發送到一個窗口。
使用步驟如下:
a、 創建事件對象來接收網絡事件:
#define WSAEVENT HANDLE
#define LPWSAEVENT LPHANDLE
WSAEVENT WSACreateEvent( void );
該函數的返回值為一個事件對象句柄,它具有兩種工作狀態:已傳信(signaled)和未傳信
(nonsignaled)以及兩種工作模式:人工重設(manual reset)和自動重設(auto reset)。默認未
未傳信的工作狀態和人工重設模式。
b、將事件對象與套接字關聯,同時注冊事件,使事件對象的工作狀態從未傳信轉變未
已傳信。
int WSAEventSelect( SOCKET s,WSAEVENT hEventObject,long lNetworkEvents );
s為套接字
hEventObject為剛才創建的事件對象句柄
lNetworkEvents為掩碼,定義如上面所述
c、I/O處理后,設置事件對象為未傳信
BOOL WSAResetEvent( WSAEVENT hEvent );
Hevent為事件對象
成功返回TRUE,失敗返回FALSE。
d、等待網絡事件來觸發事件句柄的工作狀態:
DWORD WSAWaitForMultipleEvents( DWORD cEvents,
const WSAEVENT FAR * lphEvents, BOOL fWaitAll,
DWORD dwTimeout, BOOL fAlertable );
lpEvent為事件句柄數組的指針
cEvent為為事件句柄的數目,其最大值為WSA_MAXIMUM_WAIT_EVENTS
fWaitAll指定等待類型:TRUE:當lphEvent數組重所有事件對象同時有信號時返回;
FALSE:任一事件有信號就返回。
dwTimeout為等待超時(毫秒)
fAlertable為指定函數返回時是否執行完成例程
對事件數組中的事件進行引用時,應該用WSAWaitForMultipleEvents的返回值,減去
預聲明值WSA_WAIT_EVENT_0,得到具體的引用值。例如:
nIndex=WSAWaitForMultipleEvents(…);
MyEvent=EventArray[Index- WSA_WAIT_EVENT_0];
e、判斷網絡事件類型:
int WSAEnumNetworkEvents( SOCKET s,
WSAEVENT hEventObject, LPWSANETWORKEVENTS lpNetworkEvents );
s為套接字
hEventObject為需要重設的事件對象
lpNetworkEvents為記錄網絡事件和錯誤代碼,其結構定義如下:
typedef struct _WSANETWORKEVENTS {
long lNetworkEvents;
int iErrorCode[FD_MAX_EVENTS];
} WSANETWORKEVENTS, FAR * LPWSANETWORKEVENTS;
f、關閉事件對象句柄:
BOOL WSACloseEvent(WSAEVENT hEvent);
調用成功返回TRUE,否則返回FALSE。