• <ins id="pjuwb"></ins>
    <blockquote id="pjuwb"><pre id="pjuwb"></pre></blockquote>
    <noscript id="pjuwb"></noscript>
          <sup id="pjuwb"><pre id="pjuwb"></pre></sup>
            <dd id="pjuwb"></dd>
            <abbr id="pjuwb"></abbr>
            隨筆 - 68  文章 - 57  trackbacks - 0
            <2010年4月>
            28293031123
            45678910
            11121314151617
            18192021222324
            2526272829301
            2345678

            常用鏈接

            留言簿(8)

            隨筆分類(74)

            隨筆檔案(68)

            搜索

            •  

            最新評論

            閱讀排行榜

            評論排行榜

               這個題目做得好辛苦。題目大意是給三個算術表達式,前兩個相加等于第三個,每位數都用字母代替,問最后字母對應的數是多少。數據范圍n <= 26。由于進位不確定,因此需要枚舉進位,再用高斯消元求解。我報著試一試的態度敲了一個2 ^ n * n ^ 3的程序上去,果然超時了。不知道應該如何優化,到網上看了一下,因為每次枚舉的都是常數,因此可以先把每個未知數用常量表示出來,這樣每次枚舉回帶求解的復雜度就降到了O(n ^ 2)。感覺這種做法很巧妙,不過實現的時候出了很多問題,搞了一下午才搞定- -!
              首先需要保存對于每個變量,它對應的每個常數的系數是多少。開始的時候我列方程的方向想錯了,相當成模n域的方程組來求解。結果寫了很久之后發現因為n不一定是素數,所以求解的時候解可能有多個,這樣的話就比較復雜了。后來一怒之下索性當成實數域來求解,重新列了方程,這樣解就是唯一的了,但是中間運算全是浮點數,很擔心精度問題,交上去居然過了。
              這個題目加速消元的思想還是很值得借鑒的,高斯消元的優化問題不多,但是感覺都挺有意思,就像用弦圖加速高斯消元。根據方程的不同特點來選擇合適的優化方法很重要啊。

            posted on 2009-06-10 21:49 sdfond 閱讀(236) 評論(0)  編輯 收藏 引用 所屬分類: Algorithm - Ad Hoc
            91精品国产91久久久久久青草| 国产成人精品久久| 中文字幕久久欲求不满| 99久久久久| 久久夜色精品国产亚洲| 久久久久免费视频| 久久一日本道色综合久久| 久久久国产视频| 伊人久久大香线蕉成人| 久久久久人妻精品一区| 中文字幕日本人妻久久久免费| .精品久久久麻豆国产精品| 热re99久久精品国99热| 久久av免费天堂小草播放| 精品国产综合区久久久久久| 欧美激情一区二区久久久| 国产国产成人久久精品| 精品久久久久一区二区三区 | 99热成人精品免费久久| 久久毛片一区二区| 久久午夜福利电影| 久久婷婷是五月综合色狠狠| 一级做a爰片久久毛片人呢| 精品少妇人妻av无码久久| 国产精品9999久久久久| 一本久道久久综合狠狠爱| 日韩美女18网站久久精品| 亚洲日本va午夜中文字幕久久| 国产精品免费久久| 国产亚洲欧美成人久久片| 精品免费久久久久国产一区| 97久久精品人妻人人搡人人玩| 奇米综合四色77777久久| 蜜臀久久99精品久久久久久小说 | 久久国产高潮流白浆免费观看| 久久婷婷是五月综合色狠狠| 天堂无码久久综合东京热| 久久久久黑人强伦姧人妻| 婷婷久久综合九色综合绿巨人 | 午夜久久久久久禁播电影| 欧美精品一本久久男人的天堂|