• <ins id="pjuwb"></ins>
    <blockquote id="pjuwb"><pre id="pjuwb"></pre></blockquote>
    <noscript id="pjuwb"></noscript>
          <sup id="pjuwb"><pre id="pjuwb"></pre></sup>
            <dd id="pjuwb"></dd>
            <abbr id="pjuwb"></abbr>
            隨筆 - 87  文章 - 279  trackbacks - 0
            <2025年6月>
            25262728293031
            1234567
            891011121314
            15161718192021
            22232425262728
            293012345

            潛心看書研究!

            常用鏈接

            留言簿(19)

            隨筆分類(81)

            文章分類(89)

            相冊(cè)

            ACM OJ

            My friends

            搜索

            •  

            積分與排名

            • 積分 - 217854
            • 排名 - 117

            最新評(píng)論

            閱讀排行榜

            評(píng)論排行榜

            PKU 3093 Margaritas on the River Walk
                    先對(duì)輸入的數(shù)組排序,然后類似于01對(duì)a[i]做決策,核心代碼加了注釋:
                     for (i=1; i<=n; i++) {
                             for (j=1; j<=maxsum; j++) {
                                    if (j >= sum[i]) d[i][j] = 1; //j比sum[i]大,肯定這時(shí)候d[i][j]=1;
                                    else {
                                            d[i][j] = d[i-1][j];//不考慮a[i]
                                            if (j-a[i]>=0) {//考慮a[i]
                                                     if (d[i-1][j-a[i]] > 0) d[i][j] += d[i-1][j-a[i]];//把a(bǔ)[i]加進(jìn)以前的選擇里面
                                                     else d[i][j]++;//a[i]單獨(dú)作為一個(gè)選擇(這里需要先對(duì)a[i]排序,消除后效性)
                                           }
                                    }
                             }
                     }

            PKU 1037 A decorative fence
                    先dp算出以i為起點(diǎn)的序列的個(gè)數(shù),再組合數(shù)學(xué)
                    td[n][i]和tu[n][i]分別表示個(gè)數(shù)為n,以i開(kāi)始的上升和下降的序列個(gè)數(shù)
                    易知:
                    td[n][1] = 0;
                    td[n][i] = sigma(tu[n-1][j], j從1..i-1)  = td[n][i-1] + tu[n-1][i-1] ;
                    tu[n][i]  = td[n][n+i-1];

            PKU 2677 Tour
                    雙調(diào)歐幾里德旅行商問(wèn)題(明顯階段dp)
                    動(dòng)態(tài)規(guī)劃方程 :d[i+1][i] = mint(d[i+1][i], d[i][j]+g[j][i+1]); 
                                                  d[i+1][j] = mint(d[i+1][j], d[i][j]+g[i][i+1]);
                                                   0<=j<i   

            PKU 2288 Islands and Bridges
                    集合DP
                    狀態(tài)表示: d[i][j][k] (i為13為二進(jìn)制表示點(diǎn)的狀態(tài), j為當(dāng)前節(jié)點(diǎn), k為到達(dá)j的前驅(qū)節(jié)點(diǎn))

            posted on 2007-04-20 18:10 閱讀(2127) 評(píng)論(5)  編輯 收藏 引用 所屬分類: 算法&ACM

            FeedBack:
            # re: 對(duì)一些DP題目的小結(jié) 2007-04-22 08:56 byron
            豪大牛,問(wèn)一下,這是一些題目嗎????  回復(fù)  更多評(píng)論
              
            # re: 對(duì)一些DP題目的小結(jié) 2007-04-24 00:52 
            @byron
            是pku上的題目,我菜菜啊。。。  回復(fù)  更多評(píng)論
              
            # re: 對(duì)一些DP題目的小結(jié) 2007-04-26 18:59 oyjpart
            呵呵 就聊上了啊 :)  回復(fù)  更多評(píng)論
              
            # re: 對(duì)一些DP題目的小結(jié) 2007-06-30 22:55 姜雨生
            Margaritas on the River Walk
            Time Limit:1000MS Memory Limit:65536K
            Total Submit:309 Accepted:132

            Description


            One of the more popular activities in San Antonio is to enjoy margaritas in the park along the river know as the River Walk. Margaritas may be purchased at many establishments along the River Walk from fancy hotels to Joe’s Taco and Margarita stand. (The problem is not to find out how Joe got a liquor license. That involves Texas politics and thus is much too difficult for an ACM contest problem.) The prices of the margaritas vary depending on the amount and quality of the ingredients and the ambience of the establishment. You have allocated a certain amount of money to sampling different margaritas.

            Given the price of a single margarita (including applicable taxes and gratuities) at each of the various establishments and the amount allocated to sampling the margaritas, find out how many different maximal combinations, choosing at most one margarita from each establishment, you can purchase. A valid combination must have a total price no more than the allocated amount and the unused amount (allocated amount – total price) must be less than the price of any establishment that was not selected. (Otherwise you could add that establishment to the combination.)

            For example, suppose you have $25 to spend and the prices (whole dollar amounts) are:

            Vendor A B C D H J
            Price 8 9 8 7 16 5

            Then possible combinations (with their prices) are:

            ABC(25), ABD(24), ABJ(22), ACD(23), ACJ(21), ADJ( 20), AH(24), BCD(24), BCJ(22), BDJ(21), BH(25), CDJ(20), CH(24), DH(23) and HJ(21).

            Thus the total number of combinations is 15.


            Input


            The input begins with a line containing an integer value specifying the number of datasets that follow, N (1 ≤ N ≤ 1000). Each dataset starts with a line containing two integer values V and D representing the number of vendors (1 ≤ V ≤ 30) and the dollar amount to spend (1 ≤ D ≤ 1000) respectively. The two values will be separated by one or more spaces. The remainder of each dataset consists of one or more lines, each containing one or more integer values representing the cost of a margarita for each vendor. There will be a total of V cost values specified. The cost of a margarita is always at least one (1). Input values will be chosen so the result will fit in a 32 bit unsigned integer.


            Output


            For each problem instance, the output will be a single line containing the dataset number, followed by a single space and then the number of combinations for that problem instance.


            Sample Input


            2
            6 25
            8 9 8 7 16 5
            30 250
            1 2 3 4 5 6 7 8 9 10 11
            12 13 14 15 16 17 18 19 20
            21 22 23 24 25 26 27 28 29 30

            Sample Output


            1 15
            2 16509438

            Hint


            Note: Some solution methods for this problem may be exponential in the number of vendors. For these methods, the time limit may be exceeded on problem instances with a large number of vendors such as the second example below.


            Source
            Greater New York 2006
              回復(fù)  更多評(píng)論
              
            # re: 對(duì)一些DP題目的小結(jié) 2007-06-30 22:59 姜雨生
            應(yīng)該可以更加優(yōu)化  回復(fù)  更多評(píng)論
              
            激情伊人五月天久久综合 | 少妇被又大又粗又爽毛片久久黑人| 国产激情久久久久影院| 久久久久久国产a免费观看黄色大片| 久久精品国产男包| 久久国产精品无码网站| 久久人人妻人人爽人人爽| 久久人人超碰精品CAOPOREN| www久久久天天com| 久久精品国产亚洲AV香蕉| 99久久久精品| 久久狠狠爱亚洲综合影院 | 亚洲国产美女精品久久久久∴| 久久精品国产亚洲综合色| 久久精品国产亚洲AV不卡| 热RE99久久精品国产66热| 久久精品国产亚洲77777| 久久精品国产2020| 久久国产AVJUST麻豆| 久久黄视频| 精品一区二区久久久久久久网站| 国产亚洲精久久久久久无码77777| 久久精品国产一区二区三区| 久久中文字幕一区二区| 日日躁夜夜躁狠狠久久AV| 久久人人爽人人爽人人av东京热| 香蕉久久永久视频| 一本一本久久a久久精品综合麻豆| 久久精品国产99久久久香蕉| 欧美一区二区精品久久| 成人资源影音先锋久久资源网| 一本久久知道综合久久| 国产偷久久久精品专区| 亚洲va中文字幕无码久久不卡| 久久久无码精品亚洲日韩京东传媒 | 中文字幕精品久久| 色播久久人人爽人人爽人人片AV| 久久久这里只有精品加勒比| 亚洲欧美日韩中文久久| 久久精品人人做人人妻人人玩| 亚洲精品无码久久久久去q|