• <ins id="pjuwb"></ins>
    <blockquote id="pjuwb"><pre id="pjuwb"></pre></blockquote>
    <noscript id="pjuwb"></noscript>
          <sup id="pjuwb"><pre id="pjuwb"></pre></sup>
            <dd id="pjuwb"></dd>
            <abbr id="pjuwb"></abbr>
            隨筆 - 87  文章 - 279  trackbacks - 0
            <2025年7月>
            293012345
            6789101112
            13141516171819
            20212223242526
            272829303112
            3456789

            潛心看書研究!

            常用鏈接

            留言簿(19)

            隨筆分類(81)

            文章分類(89)

            相冊

            ACM OJ

            My friends

            搜索

            •  

            積分與排名

            • 積分 - 217940
            • 排名 - 117

            最新評論

            閱讀排行榜

            評論排行榜

            PKU 3093 Margaritas on the River Walk
                    先對輸入的數(shù)組排序,然后類似于01對a[i]做決策,核心代碼加了注釋:
                     for (i=1; i<=n; i++) {
                             for (j=1; j<=maxsum; j++) {
                                    if (j >= sum[i]) d[i][j] = 1; //j比sum[i]大,肯定這時候d[i][j]=1;
                                    else {
                                            d[i][j] = d[i-1][j];//不考慮a[i]
                                            if (j-a[i]>=0) {//考慮a[i]
                                                     if (d[i-1][j-a[i]] > 0) d[i][j] += d[i-1][j-a[i]];//把a[i]加進以前的選擇里面
                                                     else d[i][j]++;//a[i]單獨作為一個選擇(這里需要先對a[i]排序,消除后效性)
                                           }
                                    }
                             }
                     }

            PKU 1037 A decorative fence
                    先dp算出以i為起點的序列的個數(shù),再組合數(shù)學(xué)
                    td[n][i]和tu[n][i]分別表示個數(shù)為n,以i開始的上升和下降的序列個數(shù)
                    易知:
                    td[n][1] = 0;
                    td[n][i] = sigma(tu[n-1][j], j從1..i-1)  = td[n][i-1] + tu[n-1][i-1] ;
                    tu[n][i]  = td[n][n+i-1];

            PKU 2677 Tour
                    雙調(diào)歐幾里德旅行商問題(明顯階段dp)
                    動態(tài)規(guī)劃方程 :d[i+1][i] = mint(d[i+1][i], d[i][j]+g[j][i+1]); 
                                                  d[i+1][j] = mint(d[i+1][j], d[i][j]+g[i][i+1]);
                                                   0<=j<i   

            PKU 2288 Islands and Bridges
                    集合DP
                    狀態(tài)表示: d[i][j][k] (i為13為二進制表示點的狀態(tài), j為當前節(jié)點, k為到達j的前驅(qū)節(jié)點)

            posted on 2007-04-20 18:10 閱讀(2129) 評論(5)  編輯 收藏 引用 所屬分類: 算法&ACM

            FeedBack:
            # re: 對一些DP題目的小結(jié) 2007-04-22 08:56 byron
            豪大牛,問一下,這是一些題目嗎????  回復(fù)  更多評論
              
            # re: 對一些DP題目的小結(jié) 2007-04-24 00:52 
            @byron
            是pku上的題目,我菜菜啊。。。  回復(fù)  更多評論
              
            # re: 對一些DP題目的小結(jié) 2007-04-26 18:59 oyjpart
            呵呵 就聊上了啊 :)  回復(fù)  更多評論
              
            # re: 對一些DP題目的小結(jié) 2007-06-30 22:55 姜雨生
            Margaritas on the River Walk
            Time Limit:1000MS Memory Limit:65536K
            Total Submit:309 Accepted:132

            Description


            One of the more popular activities in San Antonio is to enjoy margaritas in the park along the river know as the River Walk. Margaritas may be purchased at many establishments along the River Walk from fancy hotels to Joe’s Taco and Margarita stand. (The problem is not to find out how Joe got a liquor license. That involves Texas politics and thus is much too difficult for an ACM contest problem.) The prices of the margaritas vary depending on the amount and quality of the ingredients and the ambience of the establishment. You have allocated a certain amount of money to sampling different margaritas.

            Given the price of a single margarita (including applicable taxes and gratuities) at each of the various establishments and the amount allocated to sampling the margaritas, find out how many different maximal combinations, choosing at most one margarita from each establishment, you can purchase. A valid combination must have a total price no more than the allocated amount and the unused amount (allocated amount – total price) must be less than the price of any establishment that was not selected. (Otherwise you could add that establishment to the combination.)

            For example, suppose you have $25 to spend and the prices (whole dollar amounts) are:

            Vendor A B C D H J
            Price 8 9 8 7 16 5

            Then possible combinations (with their prices) are:

            ABC(25), ABD(24), ABJ(22), ACD(23), ACJ(21), ADJ( 20), AH(24), BCD(24), BCJ(22), BDJ(21), BH(25), CDJ(20), CH(24), DH(23) and HJ(21).

            Thus the total number of combinations is 15.


            Input


            The input begins with a line containing an integer value specifying the number of datasets that follow, N (1 ≤ N ≤ 1000). Each dataset starts with a line containing two integer values V and D representing the number of vendors (1 ≤ V ≤ 30) and the dollar amount to spend (1 ≤ D ≤ 1000) respectively. The two values will be separated by one or more spaces. The remainder of each dataset consists of one or more lines, each containing one or more integer values representing the cost of a margarita for each vendor. There will be a total of V cost values specified. The cost of a margarita is always at least one (1). Input values will be chosen so the result will fit in a 32 bit unsigned integer.


            Output


            For each problem instance, the output will be a single line containing the dataset number, followed by a single space and then the number of combinations for that problem instance.


            Sample Input


            2
            6 25
            8 9 8 7 16 5
            30 250
            1 2 3 4 5 6 7 8 9 10 11
            12 13 14 15 16 17 18 19 20
            21 22 23 24 25 26 27 28 29 30

            Sample Output


            1 15
            2 16509438

            Hint


            Note: Some solution methods for this problem may be exponential in the number of vendors. For these methods, the time limit may be exceeded on problem instances with a large number of vendors such as the second example below.


            Source
            Greater New York 2006
              回復(fù)  更多評論
              
            # re: 對一些DP題目的小結(jié) 2007-06-30 22:59 姜雨生
            應(yīng)該可以更加優(yōu)化  回復(fù)  更多評論
              
            色欲综合久久躁天天躁| 久久香综合精品久久伊人| 国产精品一区二区久久不卡| 久久国产欧美日韩精品| 久久99国内精品自在现线| 久久九九亚洲精品| 亚洲国产精品狼友中文久久久| 无码国内精品久久综合88| 亚洲国产成人久久综合碰碰动漫3d| 久久国产亚洲精品麻豆| 一级A毛片免费观看久久精品| 久久久女人与动物群交毛片| 久久综合久久综合久久| 久久午夜无码鲁丝片秋霞 | 久久久久久久综合日本亚洲| 久久黄视频| 国产欧美一区二区久久| 婷婷国产天堂久久综合五月| 久久亚洲国产欧洲精品一| 精品人妻伦九区久久AAA片69| 欧美一区二区精品久久| 婷婷久久久亚洲欧洲日产国码AV | 久久久久人妻一区精品果冻| 久久亚洲精品成人av无码网站| 日本精品一区二区久久久| 成人资源影音先锋久久资源网| 精品久久人人爽天天玩人人妻| 免费一级欧美大片久久网| 狠狠综合久久综合中文88| 日本精品久久久久中文字幕8| 久久精品国产亚洲AV麻豆网站| 久久热这里只有精品在线观看| 热综合一本伊人久久精品| 97久久精品人人澡人人爽| 国产亚洲美女精品久久久久狼| 久久大香香蕉国产| 国内精品久久久久影院优| 久久精品中文闷骚内射| 77777亚洲午夜久久多喷| 久久精品人人槡人妻人人玩AV| 人妻精品久久久久中文字幕69 |