定理:令K[x]是由次數小于8、系數為0或1的多項式組成的環,m(x)=x^8+x^4+x^3+x+1為不可約多項式,則K[x]/(m(x))(模m(x)剩余類環)同構于元素個數為256的有限域F
證明:
1. 構造映射H: P->Z,P表示K[x]中的多項式,Z表示小于256的非負整數,定義函數h(p)=z(mod 256)。顯然H為雙射;依初等數論同余性質有h(p1+p2)=(z1+z2)mod 256=z1(mod 256)+z2(mod 256)=h(p1)+h(p2),h(p1*p2)=z1*z2(mod 256)=z1(mod 256)*z2(mod 256)=h(p1)*h(p2),故H保持加法乘法封閉性。這點保證支持任意明文/密文的運算
2. 由一元多項式環的性質得多項式乘法可以交換,即f(x)•g(x)=g(x)•f(x),滿足域的交換條件。其乘法單位元是常數項1,滿足域的單位元條件
3. 因非零多項式f(x)與m(x)互素,由一元多項式環的互素定理知存在g(x)、k(x)使得f(x)•g(x)+m(x)•k(x)=1(系數模2),即f(x)•g(x)模m(x)余1(這里1表示單位元),故f(x)存在逆元,由群定義知逆元必唯一,滿足域的逆元條件。另aes規定零多項式的逆元為其自身。這點保證s盒及列混合操作可逆
posted on 2023-09-06 22:22
春秋十二月 閱讀(1452)
評論(0) 編輯 收藏 引用 所屬分類:
Algorithm