類型定義
在多叉樹中,后序遍歷迭代器有只讀、讀寫、只讀反轉(zhuǎn)、讀寫反轉(zhuǎn)4種,在mtree容器中的定義如下:
1
typedef post_iterator_impl<false,false> post_iterator;
2
typedef post_iterator_impl<false,true> reverse_post_iterator;
3
typedef post_iterator_impl<true,false> const_post_iterator;
4
typedef post_iterator_impl<true,true> const_reverse_post_iterator;
接口定義
對于二叉樹的后序遍歷,我們都很熟悉,類似地,多叉樹的后序遍歷與二叉樹一樣:先訪問它的左子樹(若存在),再訪問它的右子樹(若存在),然后訪問它的根結(jié)點(diǎn),遞歸地,每顆子樹內(nèi)部結(jié)點(diǎn)的訪問順序都遵循著上面的規(guī)律。下面代碼是后序遍歷迭代器的聲明:
1
template<bool is_const,bool is_reverse>
2
class post_iterator_impl : public iterator_base_impl<is_const>
3
{
4
friend class mtree<T,false>;
5
typedef iterator_base_impl<is_const> base_type;
6
typedef typename base_type::node_pointer_type node_pointer_type;
7
typedef typename base_type::tree_pointer_type tree_pointer_type;
8
using base_type::tree_;
9
using base_type::off_;
10
using base_type::root_;
11
using base_type::skip_progeny_;
12
public:
13
post_iterator_impl();
14
post_iterator_impl(const base_type& iter);
15
post_iterator_impl& operator++();
16
post_iterator_impl& operator--();
17
post_iterator_impl operator++(int);
18
post_iterator_impl operator--(int);
19
post_iterator_impl operator + (size_t off);
20
post_iterator_impl& operator += (size_t off);
21
post_iterator_impl operator - (size_t off);
22
post_iterator_impl& operator -= (size_t off);
23
post_iterator_impl begin() const;
24
post_iterator_impl end() const;
25
protected:
26
void first(no_reverse_tag);
27
void first(reverse_tag);
28
void last(no_reverse_tag);
29
void last(reverse_tag);
30
void increment(no_reverse_tag);
31
void increment(reverse_tag);
32
void decrement(no_reverse_tag);
33
void decrement(reverse_tag);
34
private:
35
void forward_first();
36
void forward_last();
37
void forward_next();
38
void forward_prev();
39
};
接口實現(xiàn)
下面重點(diǎn)講述后序遍歷中4種定位方法的具體實現(xiàn),隨后列出其它所有方法的實現(xiàn)代碼。 (1)forward_first:求正向第一個結(jié)點(diǎn),就是子樹最左側(cè)最深的那個結(jié)點(diǎn),代碼如下:
1
template<typename T>
2
template<bool is_const,bool is_reverse>
3
inline void mtree<T,false>::post_iterator_impl<is_const,is_reverse>::forward_first()
4
{
5
off_ = root_; node_pointer_type p_node = &(*tree_)[off_];
6
while (p_node->first_child_)
7
{
8
off_ += p_node->first_child_;
9
p_node = &(*tree_)[off_];
10
}
11
} (2)forward_last:求正向最后一個結(jié)點(diǎn),就是子樹的根結(jié)點(diǎn),代碼如下:
1
template<typename T>
2
template<bool is_const,bool is_reverse>
3
inline void mtree<T,false>::post_iterator_impl<is_const,is_reverse>::forward_last()
4
{
5
off_ = root_;
6
} (3)forward_next:求正向下一個結(jié)點(diǎn),步驟如下:a) 如果當(dāng)前結(jié)點(diǎn)不是根結(jié)點(diǎn)且有右兄弟,那么就是以它的右兄弟為根的子樹的最右側(cè)最深的那個結(jié)點(diǎn),反之則轉(zhuǎn)到b)。b) 如果當(dāng)前結(jié)點(diǎn)是根結(jié)點(diǎn)或父結(jié)點(diǎn)為空,那么返回end,否則就是其父結(jié)點(diǎn)。代碼如下:
1
template<typename T>
2
template<bool is_const,bool is_reverse>
3
inline void mtree<T,false>::post_iterator_impl<is_const,is_reverse>::forward_next()
4
{
5
node_pointer_type p_node = &(*tree_)[off_];
6
if (off_!=root_&&p_node->next_sibling_)
7
{
8
off_ += p_node->next_sibling_;
9
p_node = &(*tree_)[off_];
10
while (p_node->first_child_)
11
{
12
off_ += p_node->first_child_;
13
p_node = &(*tree_)[off_];
14
}
15
}
16
else
17
{
18
if (off_==root_||!p_node->parent_)
19
off_ = tree_->size();
20
else
21
off_ -= p_node->parent_;
22
}
23
} (4)forward_prev:求正向前一個結(jié)點(diǎn),步驟如下:a) 如果當(dāng)前結(jié)點(diǎn)有孩子且不跳過后代,那么就是最后一個孩子結(jié)點(diǎn),反之則轉(zhuǎn)到b)。 b) 如果當(dāng)前結(jié)點(diǎn)不是根結(jié)點(diǎn)且有左兄弟結(jié)點(diǎn),那么就是其左兄弟結(jié)點(diǎn),否則轉(zhuǎn)到c)。 c) 一直向上回溯,直到碰到根結(jié)點(diǎn)或父結(jié)點(diǎn)為空或存在左兄弟結(jié)點(diǎn)時才結(jié)束,如果碰到根結(jié)點(diǎn)或父結(jié)點(diǎn)為空,那么返回end,否則就是其左兄弟結(jié)點(diǎn)。代碼如下:
1
template<typename T>
2
template<bool is_const,bool is_reverse>
3
inline void mtree<T,false>::post_iterator_impl<is_const,is_reverse>::forward_prev()
4
{
5
node_pointer_type p_node = &(*tree_)[off_];
6
if (!skip_progeny_&&p_node->last_child_)
7
{
8
off_ += p_node->last_child_;
9
}
10
else if (off_!=root_&&p_node->prev_sibling_)
11
{
12
off_ -= p_node->prev_sibling_;
13
}
14
else
15
{
16
while (off_!=root_&&p_node->parent_&&!p_node->prev_sibling_)
17
{
18
off_ -= p_node->parent_;
19
p_node = &(*tree_)[off_];
20
}
21
if (off_==root_||!p_node->parent_)
22
off_ = tree_->size();
23
else
24
off_ -= p_node->prev_sibling_;
25
}
26
} (5)構(gòu)造函數(shù)的實現(xiàn),代碼如下:
1
template<typename T>
2
template<bool is_const,bool is_reverse>
3
inline mtree<T,false>::post_iterator_impl<is_const,is_reverse>::post_iterator_impl()
4
:base_type()
5
{
6
root_ = 0;
7
}
8
template<typename T>
9
template<bool is_const,bool is_reverse>
10
inline mtree<T,false>::post_iterator_impl<is_const,is_reverse>::post_iterator_impl(const base_type& iter)
11
:base_type(iter)
12
{
13
root_ = off_;
14
} (6)公有方法的實現(xiàn),代碼如下:
1
template<typename T>
2
template<bool is_const,bool is_reverse>
3
inline typename mtree<T,false>::template post_iterator_impl<is_const,is_reverse>&
4
mtree<T,false>::post_iterator_impl<is_const,is_reverse>::operator++()
5
{
6
increment(typename reverse_trait<is_reverse>::type());
7
return *this;
8
}
9
template<typename T>
10
template<bool is_const,bool is_reverse>
11
inline typename mtree<T,false>::template post_iterator_impl<is_const,is_reverse>&
12
mtree<T,false>::post_iterator_impl<is_const,is_reverse>::operator--()
13
{
14
decrement(typename reverse_trait<is_reverse>::type());
15
return *this;
16
}
17
template<typename T>
18
template<bool is_const,bool is_reverse>
19
inline typename mtree<T,false>::template post_iterator_impl<is_const,is_reverse>
20
mtree<T,false>::post_iterator_impl<is_const,is_reverse>::operator++(int)
21
{
22
post_iterator_impl<is_const,is_reverse> iter(*this);
23
--(*this);
24
return iter;
25
}
26
template<typename T>
27
template<bool is_const,bool is_reverse>
28
inline typename mtree<T,false>::template post_iterator_impl<is_const,is_reverse>
29
mtree<T,false>::post_iterator_impl<is_const,is_reverse>::operator--(int)
30
{
31
post_iterator_impl<is_const,is_reverse> iter(*this);
32
--(*this);
33
return iter;
34
}
35
template<typename T>
36
template<bool is_const,bool is_reverse>
37
inline typename mtree<T,false>::template post_iterator_impl<is_const,is_reverse>
38
mtree<T,false>::post_iterator_impl<is_const,is_reverse>::operator + (size_t off)
39
{
40
post_iterator_impl<is_const,is_reverse> iter(*this);
41
iter += off;
42
return iter;
43
}
44
template<typename T>
45
template<bool is_const,bool is_reverse>
46
inline typename mtree<T,false>::template post_iterator_impl<is_const,is_reverse>&
47
mtree<T,false>::post_iterator_impl<is_const,is_reverse>::operator += (size_t off)
48
{
49
while (off)
50
{
51
if (base_type::is_null()) break;
52
++(*this); --off;
53
}
54
return *this;
55
}
56
template<typename T>
57
template<bool is_const,bool is_reverse>
58
inline typename mtree<T,false>::template post_iterator_impl<is_const,is_reverse>
59
mtree<T,false>::post_iterator_impl<is_const,is_reverse>::operator - (size_t off)
60
{
61
post_iterator_impl<is_const,is_reverse> iter(*this);
62
iter -= off;
63
return iter;
64
}
65
template<typename T>
66
template<bool is_const,bool is_reverse>
67
inline typename mtree<T,false>::template post_iterator_impl<is_const,is_reverse>&
68
mtree<T,false>::post_iterator_impl<is_const,is_reverse>::operator -= (size_t off)
69
{
70
while (off)
71
{
72
if (base_type::is_null()) break;
73
--(*this); --off;
74
}
75
return *this;
76
}
77
template<typename T>
78
template<bool is_const,bool is_reverse>
79
inline typename mtree<T,false>::template post_iterator_impl<is_const,is_reverse>
80
mtree<T,false>::post_iterator_impl<is_const,is_reverse>::begin() const
81
{
82
post_iterator_impl<is_const,is_reverse> iter(*this);
83
iter.first(typename reverse_trait<is_reverse>::type());
84
return iter;
85
}
86
template<typename T>
87
template<bool is_const,bool is_reverse>
88
inline typename mtree<T,false>::template post_iterator_impl<is_const,is_reverse>
89
mtree<T,false>::post_iterator_impl<is_const,is_reverse>::end() const
90
{
91
post_iterator_impl<is_const,is_reverse> iter(*this);
92
if (tree_)
93
{
94
iter.off_ = tree_->size();
95
}
96
return iter;
97
}
使用示例
(1)正向遍歷整顆樹,代碼如下:
1
mtree<int,false> mt;
2
mtree<int,false>::iterator_base root = mt.get_root();
3
mtree<int,false>::post_iterator it = root;
4
mtree<int,false>::post_iterator last = --it.end();
5
for (it = it.begin();it!=it.end();++it)
6
{
7
cout << *it;
8
if (it!=last)
9
cout <<" ";
10
} (2)反
向遍歷整顆樹,代碼如下:
1
mtree<int,false> mt;
2
mtree<int,false>::iterator_base root = mt.get_root();
3
mtree<int,false>::reverse_post_iterator r_it = root;
4
mtree<int,false>::reverse_post_iterator r_last = --r_it.end();
5
for (r_it = r_it.begin();r_it!=r_it.end();++r_it)
6
{
7
cout << *r_it;
8
if (r_it!=r_last)
9
cout <<" ";
10
}
posted on 2011-08-15 12:51
春秋十二月 閱讀(1917)
評論(2) 編輯 收藏 引用 所屬分類:
Algorithm