• <ins id="pjuwb"></ins>
    <blockquote id="pjuwb"><pre id="pjuwb"></pre></blockquote>
    <noscript id="pjuwb"></noscript>
          <sup id="pjuwb"><pre id="pjuwb"></pre></sup>
            <dd id="pjuwb"></dd>
            <abbr id="pjuwb"></abbr>

            ZOJ 1311 Network 求割點

            A Telephone Line Company (TLC) is establishing a new telephone cable network. They are connecting several places numbered by integers from 1 to N. No two places have the same number. The lines are bidirectional and always connect together two places and in each place the lines end in a telephone exchange. There is one telephone exchange in each place. From each place it is possible to reach through lines every other place, however it need not be a direct connection, it can go through several exchanges. From time to time the power supply fails at a place and then the exchange does not operate. The officials from TLC realized that in such a case it can happen that besides the fact that the place with the failure is unreachable, this can also cause that some other places cannot connect to each other. In such a case we will say the place (where the failure occured) is critical. Now the officials are trying to write a program for finding the number of all such critical places. Help them.


            Input

            The input consists of several blocks of lines. Each block describes one network. In the first line of each block there is the number of places N < 100. Each of the next at most N lines contains the number of a place followed by the numbers of some places to which there is a direct line from this place. These at most N lines completely describe the network, i.e., each direct connection of two places in the network is contained at least in one row. All numbers in one line are separated by one space. Each block ends with a line containing just 0. The last block has only one line with N = 0.


            Output

            The output contains for each block except the last in the input one line containing the number of critical places.


            Sample Input

            5
            5 1 2 3 4
            0
            6
            2 1 3
            5 4 6 2
            0
            0


            Sample Output

            1
            2

             

            無向連通圖的割點性質

            1.       考慮根節(jié)點root。如果頂點xy同是root的兒子,那么由此證明x無法通過非root的頂點與y相連,所以當根root有數(shù)量>1的兒子時,根是圖的割點。

            2.       考慮非根節(jié)點i,再考慮i的某個兒子節(jié)點j。易知:

                      和j相連的白色節(jié)點都將成為j的子孫。

                      和j相連的灰色節(jié)點都是j的祖先,由j指向i祖先的邊稱為后向邊

                      黑色節(jié)點不可能與j相連。

                      如果jj的子孫都不存在指向j的祖先的后向邊,那么刪除頂點i后,頂點ji的祖先或者兄弟無法連通。因此,當且僅當i的某個兒子及兒子的子孫均沒有指向i祖先的后向邊時,i是圖的割點。

             

            割點的算法

            dfs的基礎上增加ancestor數(shù)組,ancestor[k]記錄與kk的子孫相連的輩分最高的祖先所在的深度,當ancestor[j]>=deep[j](ji的兒子)jj的子孫不存在指向i祖先的后向邊,則i是割點。Son表示頂點k的兒子的數(shù)量。根節(jié)點和非根節(jié)點要區(qū)別對待。

            #include <iostream>
            #include 
            <vector>
            using namespace std;

            const int MAXN = 110;
            vector
            < vector<int> > adj;
            int cut[MAXN],mark[MAXN],deep[MAXN],ancestor[MAXN];

            char *read(char str[],char *p){
                
            while(*&& *p!=' ') p++;
                
            while(*&& *p==' ') p++;
                
            return p;
            }

            void dfs(int u,int father,int depth){
                
            int i,v,son=0;
                mark[u]
            =1;
                deep[u]
            =ancestor[u]=depth;
                
            for(i=0;i<adj[u].size();i++){
                    v
            =adj[u][i];
                    
            if(v!=father && mark[v]==1)
                        ancestor[u]
            =min(ancestor[u],deep[v]);
                    
            if(mark[v]==0){
                        dfs(v,u,depth
            +1);
                        son
            =son+1;
                        ancestor[u]
            =min(ancestor[u],ancestor[v]);
                        
            if((father==-1 && son>1|| (father!=-1 && ancestor[v]>=deep[u]))
                            cut[u]
            =1;
                    }

                }

                mark[u]
            =2;
            }

            int main(){
                
            int i,x,y,n,cnt;
                
            char str[MAXN*10],*p;
                
            while(scanf("%d",&n),n){
                    adj.assign(n,vector
            <int>());
                    
            while(scanf("%d",&x),x){
                        gets(str);
                        
            for(p=read(str,str);sscanf(p,"%d",&y)!=EOF;p=read(str,p))
                            adj[x
            -1].push_back(y-1),adj[y-1].push_back(x-1);
                    }

                    memset(cut,
            0,sizeof(cut));
                    memset(mark,
            0,sizeof(mark));
                    
            for(i=0;i<n;i++)
                        
            if(!mark[i]) dfs(i,-1,0);
                    
            for(cnt=i=0;i<n;i++)
                        
            if(cut[i]) cnt++;
                    printf(
            "%d\n",cnt);
                }

                
            return 0;
            }

            posted on 2009-05-27 20:35 極限定律 閱讀(1073) 評論(2)  編輯 收藏 引用 所屬分類: ACM/ICPC

            評論

            # re: ZOJ 1311 Network 求割點 2009-08-13 23:05 zeus

            for(i=0;i<n;i++)
            if(!mark[i]) dfs(0,-1,0);
            這一句應該是dfs(i,-1,0)吧?不過居然都ac  回復  更多評論   

            # re: ZOJ 1311 Network 求割點 2009-08-14 20:55 極限定律

            多謝,寫錯了。居然能AC確實有點神奇@zeus  回復  更多評論   

            <2009年8月>
            2627282930311
            2345678
            9101112131415
            16171819202122
            23242526272829
            303112345

            導航

            統(tǒng)計

            常用鏈接

            留言簿(10)

            隨筆分類

            隨筆檔案

            友情鏈接

            搜索

            最新評論

            閱讀排行榜

            評論排行榜

            国内精品久久久久久久久| 久久久久青草线蕉综合超碰| 久久人人爽爽爽人久久久| 精品久久久久香蕉网| 色综合久久中文色婷婷| 欧美激情精品久久久久久久九九九| 免费国产99久久久香蕉| 亚洲伊人久久综合影院| 久久99精品久久久久婷婷| 国产精品成人99久久久久 | 久久人人爽人人爽人人片AV不| 久久人人爽人人爽人人片av麻烦| 久久人人妻人人爽人人爽| 久久香蕉国产线看观看乱码| 伊人久久国产免费观看视频 | 四虎久久影院| 久久成人精品视频| 亚洲精品无码久久久久久| 久久久久99精品成人片| 国产∨亚洲V天堂无码久久久| 久久影院午夜理论片无码| 91精品国产9l久久久久| 伊人久久综合无码成人网| 国产999精品久久久久久| 久久丫精品国产亚洲av不卡| 亚洲?V乱码久久精品蜜桃| 久久精品国产一区二区三区| 久久精品国产清高在天天线| 伊人久久精品无码av一区| 久久人人爽人人爽人人av东京热| 久久久久国产一区二区 | 日韩AV无码久久一区二区| 中文字幕久久亚洲一区| 欧美麻豆久久久久久中文| 青青青伊人色综合久久| 久久精品国产精品青草| 国产成人精品免费久久久久| 久久久久人妻精品一区二区三区| 久久亚洲AV成人无码国产 | 久久久久久精品免费看SSS| 久久久久久国产精品免费免费 |