• <ins id="pjuwb"></ins>
    <blockquote id="pjuwb"><pre id="pjuwb"></pre></blockquote>
    <noscript id="pjuwb"></noscript>
          <sup id="pjuwb"><pre id="pjuwb"></pre></sup>
            <dd id="pjuwb"></dd>
            <abbr id="pjuwb"></abbr>

            POJ 1178 Camelot Floyd算法+枚舉

            Description

            Centuries ago, King Arthur and the Knights of the Round Table used to meet every year on New Year's Day to celebrate their fellowship. In remembrance of these events, we consider a board game for one player, on which one king and several knight pieces are placed at random on distinct squares.
            The Board is an 8x8 array of squares. The King can move to any adjacent square, as shown in Figure 2, as long as it does not fall off the board. A Knight can jump as shown in Figure 3, as long as it does not fall off the board.

            During the play, the player can place more than one piece in the same square. The board squares are assumed big enough so that a piece is never an obstacle for other piece to move freely.
            The player抯 goal is to move the pieces so as to gather them all in the same square, in the smallest possible number of moves. To achieve this, he must move the pieces as prescribed above. Additionally, whenever the king and one or more knights are placed in the same square, the player may choose to move the king and one of the knights together henceforth, as a single knight, up to the final gathering point. Moving the knight together with the king counts as a single move.

            Write a program to compute the minimum number of moves the player must perform to produce the gathering.

            Input

            Your program is to read from standard input. The input contains the initial board configuration, encoded as a character string. The string contains a sequence of up to 64 distinct board positions, being the first one the position of the king and the remaining ones those of the knights. Each position is a letter-digit pair. The letter indicates the horizontal board coordinate, the digit indicates the vertical board coordinate.

            0 <= number of knights <= 63

            Output

            Your program is to write to standard output. The output must contain a single line with an integer indicating the minimum number of moves the player must perform to produce the gathering.

            Sample Input

            D4A3A8H1H8

            Sample Output

            10

            Source


                棋盤上有1個國王和若干個騎士,要把國王和每個騎士移動到同一個格子內,問需要移動的最小步數是多少。如果國王和騎士走到同一個格子里,可以由騎士帶著國王一起移動。
                枚舉棋盤上的64個點作為終點,對于每一個假定的終點,再枚舉這64個點作為國王和某個騎士相遇的點,最后求出需要移動的最小步數。其中根據騎士和國王移動的特點可以預處理出從1個點到另外1個點所需的最小移動次數,也可用搜索。
            #include <iostream>
            using namespace std;

            const int inf = 100000;
            char str[150];
            int k[64],king[64][64],knight[64][64];
            int move1[8][2]={-1,-1,-1,0,-1,1,0,1,1,1,1,0,1,-1,0,-1};
            int move2[8][2]={-1,-2,-2,-1,-2,1,-1,2,1,2,2,1,2,-1,1,-2};

            void init(){
                
            int i,j,x,y,tx,ty;
                
            for(i=0;i<64;i++)
                    
            for(j=0;j<64;j++)
                        
            if(i==j) king[i][j]=knight[i][j]=0;
                        
            else king[i][j]=knight[i][j]=inf;
                
            for(i=0;i<64;i++){
                    x
            =i/8,y=i%8;
                    
            for(j=0;j<8;j++){
                        tx
            =x+move1[j][0],ty=y+move1[j][1];
                        
            if(tx>=0 && ty>=0 && tx<8 && ty<8)
                            king[i][
            8*tx+ty]=1;
                    }

                }

                
            for(i=0;i<64;i++){
                    x
            =i/8,y=i%8;
                    
            for(j=0;j<8;j++){
                        tx
            =x+move2[j][0],ty=y+move2[j][1];
                        
            if(tx>=0 && ty>=0 && tx<8 && ty<8)
                            knight[i][
            8*tx+ty]=1;
                    }

                }

            }

            void floyd1(){
                
            int i,j,k;
                
            for(k=0;k<64;k++)
                    
            for(i=0;i<64;i++)
                        
            for(j=0;j<64;j++)
                            
            if(king[i][k]+king[k][j]<king[i][j])
                                king[i][j]
            =king[i][k]+king[k][j];
            }

            void floyd2(){
                
            int i,j,k;
                
            for(k=0;k<64;k++)
                    
            for(i=0;i<64;i++)
                        
            for(j=0;j<64;j++)
                            
            if(knight[i][k]+knight[k][j]<knight[i][j])
                                knight[i][j]
            =knight[i][k]+knight[k][j];
            }

            int main(){
                
            int i,j,l,cnt,pos,sum,ans,len,t1,t2;
                init();
                floyd1();
                floyd2();
                
            while(scanf("%s",str)!=EOF){
                    len
            =strlen(str);
                    pos
            =(str[0]-'A')+(str[1]-'1')*8;
                    cnt
            =(len-2)/2;
                    
            if(cnt==0){
                        printf(
            "0\n");
                        
            continue;
                    }

                    
            for(i=0,j=2;i<cnt;i++,j+=2)
                        k[i]
            =(str[j]-'A')+(str[j+1]-'1')*8;
                    
            for(ans=inf,i=0;i<64;i++){
                        
            for(sum=l=0;l<cnt;l++)
                            sum
            +=knight[k[l]][i];
                        
            for(j=0;j<64;j++){
                            t1
            =king[pos][j];
                            
            for(t2=inf,l=0;l<cnt;l++)
                                t2
            =min(t2,knight[k[l]][j]+knight[j][i]-knight[k[l]][i]);
                            ans
            =min(ans,sum+t1+t2);
                        }

                    }

                    printf(
            "%d\n",ans);
                }

                
            return 0;
            }

            posted on 2009-07-02 23:57 極限定律 閱讀(2338) 評論(0)  編輯 收藏 引用 所屬分類: ACM/ICPC

            <2009年7月>
            2829301234
            567891011
            12131415161718
            19202122232425
            2627282930311
            2345678

            導航

            統計

            常用鏈接

            留言簿(10)

            隨筆分類

            隨筆檔案

            友情鏈接

            搜索

            最新評論

            閱讀排行榜

            評論排行榜

            久久久久综合网久久| 亚洲精品久久久www| 久久亚洲AV成人出白浆无码国产| 亚洲∧v久久久无码精品| 日韩久久久久久中文人妻| 久久久精品免费国产四虎| 亚洲精品97久久中文字幕无码| 无码人妻精品一区二区三区久久| 国产精品无码久久综合| 亚洲欧美精品一区久久中文字幕| 久久中文骚妇内射| 亚洲国产精品无码久久青草| 久久精品国产清高在天天线| 久久涩综合| 91麻精品国产91久久久久 | 久久婷婷五月综合97色直播| 东方aⅴ免费观看久久av| 久久亚洲国产成人精品无码区| 久久精品99久久香蕉国产色戒| 色播久久人人爽人人爽人人片aV| 久久天天躁狠狠躁夜夜网站| 亚洲国产日韩欧美综合久久| 久久久久99精品成人片欧美| 亚洲精品视频久久久| 国内精品免费久久影院| 久久国产乱子伦精品免费强| 欧美熟妇另类久久久久久不卡| 久久久久亚洲国产| 亚洲а∨天堂久久精品| 久久精品成人免费国产片小草| 国产精品久久久久影院嫩草| 国内精品久久久久久久久电影网| 三级韩国一区久久二区综合| 日日狠狠久久偷偷色综合96蜜桃 | 国产香蕉久久精品综合网| 精品久久久久久国产三级| 亚洲嫩草影院久久精品| 亚洲精品高清久久| 国产午夜精品久久久久九九电影| 久久亚洲国产中v天仙www| 久久本道综合久久伊人|