• <ins id="pjuwb"></ins>
    <blockquote id="pjuwb"><pre id="pjuwb"></pre></blockquote>
    <noscript id="pjuwb"></noscript>
          <sup id="pjuwb"><pre id="pjuwb"></pre></sup>
            <dd id="pjuwb"></dd>
            <abbr id="pjuwb"></abbr>

            POI 2001 Peaceful Commission 2-SAT問題

            The Public Peace Commission should be legislated in Parliament of The Democratic Republic of Byteland according to The Very Important Law. Unfortunately one of the obstacles is the fact that some deputies do not get on with some others.

            The Commission has to fulfill the following conditions:

            • Each party has exactly one representative in the Commission,
            • If two deputies do not like each other, they cannot both belong to the Commission.

            Each party has exactly two deputies in the Parliament. All of them are numbered from 1 to 2n. Deputies with numbers 2i-1 and 2i belong to the i-th party .

            Task

            Write a program, which:

            • reads from the text file SPO.IN the number of parties and the pairs of deputies that are not on friendly terms,
            • decides whether it is possible to establish the Commission, and if so, proposes the list of members,
            • writes the result in the text file SPO.OUT.

            Input

            In the first line of the text file SPO.IN there are two non-negative integers n and m. They denote respectively: the number of parties, 1 <= n <= 8000, and the number of pairs of deputies, who do not like each other, 0 <= m <=2 0000. In each of the following m lines there is written one pair of integers a and b, 1 <= a < b <= 2n, separated by a single space. It means that the deputies a and b do not like each other.

            There are multiple test cases. Process to end of file.

            Output

            The text file SPO.OUT should contain one word NIE (means NO in Polish), if the setting up of the Commission is impossible. In case when setting up of the Commission is possible the file SPO.OUT should contain n integers from the interval from 1 to 2n, written in the ascending order, indicating numbers of deputies who can form the Commission. Each of these numbers should be written in a separate line. If the Commission can be formed in various ways, your program may write any of them.

            Sample Input

            3 2
            1 3
            2 4

            Sample Output

            1
            4
            5
            
               最近看了2篇關于2-SAT問題的IOI論文,對2-SAT問題的O(m)時間復雜度的解法也有了一定的了解,找了道POI 2001的題來做,在WA了無數(shù)次之后終于過了,跑了1.44s,效率還可以。
            2篇論文分別是<<由對稱性解2-SAT問題>>和<<2-SAT解法淺析>>。
            //2-SAT問題
            //求出所有強連通分量,如果有矛盾點同處于一個連通分量則無解
            //縮點,將原圖反向建立DAG圖
            //按拓撲排序著色,找一個未著色點x,染成紅色
            //將與x矛盾的頂點及其子孫染為藍色
            //直到所有頂點均被染色,紅色即為2-SAT的一組解
            #include <iostream>
            #include 
            <vector>
            #include 
            <queue>
            using namespace std;

            const int MAXN = 16010;//2*8000
            char color[MAXN];//染色
            bool visit[MAXN];
            queue
            <int> q1,q2;
            vector
            < vector<int> > adj; //原圖
            vector< vector<int> > radj;//逆向圖
            vector< vector<int> > dag; //縮點后的逆向DAG圖
            int n,m,cnt,id[MAXN],order[MAXN],ind[MAXN];//強連通分量,訪問順序,入度

            void dfs(int u){
                visit[u]
            =true;
                
            int i,len=adj[u].size();
                
            for(i=0;i<len;i++)
                    
            if(!visit[adj[u][i]])
                        dfs(adj[u][i]);
                order[cnt
            ++]=u;
            }

            void rdfs(int u){
                visit[u]
            =true;
                id[u]
            =cnt;
                
            int i,len=radj[u].size();
                
            for(i=0;i<len;i++)
                    
            if(!visit[radj[u][i]])
                        rdfs(radj[u][i]);
            }

            void korasaju(){
                
            int i;
                memset(visit,
            false,sizeof(visit));
                
            for(cnt=0,i=1;i<=2*n;i++)
                    
            if(!visit[i]) dfs(i);
                memset(id,
            0,sizeof(id));
                memset(visit,
            false,sizeof(visit));
                
            for(cnt=0,i=2*n-1;i>=0;i--)
                    
            if(!visit[order[i]])
                        cnt
            ++,rdfs(order[i]);
            }

            bool solvable(){
                
            for(int i=1;i<=n;i++)
                    
            if(id[2*i-1]==id[2*i])
                        
            return false;
                
            return true;
            }

            void topsort(){
                
            int i,j,len,now,p,pid;    
                
            while(!q1.empty()){
                    now
            =q1.front();
                    q1.pop();
                    
            if(color[now]!=0continue ;
                    color[now]
            ='R';
                    ind[now]
            =-1;
                    
            for(i=1;i<=2*n;i++){
                        
            if(id[i]==now){
                            p
            =(i%2)?i+1:i-1;
                            pid
            =id[p];                        
                            q2.push(pid);
                            
            while(!q2.empty()){
                                pid
            =q2.front();
                                q2.pop();
                                
            if(color[pid]=='B'continue ;            
                                color[pid]
            ='B';
                                
            int len=dag[pid].size();
                                
            for(j=0;j<len;j++)
                                    q2.push(dag[pid][j]);
                            }

                        }

                    }

                    len
            =dag[now].size();
                    
            for(i=0;i<len;i++){
                        ind[dag[now][i]]
            --;
                        
            if(ind[dag[now][i]]==0) q1.push(dag[now][i]);        
                    }

                }

            }

            int main(){
                
            int i,j,x,y,xx,yy,len;
                
            while(scanf("%d %d",&n,&m)!=EOF){
                    adj.assign(
            2*n+1,vector<int>());
                    radj.assign(
            2*n+1,vector<int>());
                    
            for(i=0;i<m;i++){
                        scanf(
            "%d %d",&x,&y);
                        xx
            =(x%2)?x+1:x-1;
                        yy
            =(y%2)?y+1:y-1;
                        adj[x].push_back(yy);
                        adj[y].push_back(xx);
                        radj[yy].push_back(x);
                        radj[xx].push_back(y);
                    }

                    korasaju();
                    
            if(!solvable()) puts("NIE");
                    
            else{
                        dag.assign(cnt
            +1,vector<int>());
                        memset(ind,
            0,sizeof(ind));
                        memset(color,
            0,sizeof(color));
                        
            for(i=1;i<=2*n;i++){
                            len
            =adj[i].size();
                            
            for(j=0;j<len;j++)
                                
            if(id[i]!=id[adj[i][j]]){
                                    dag[id[adj[i][j]]].push_back(id[i]);
                                    ind[id[i]]
            ++;
                                }

                        }

                        
            for(i=1;i<=cnt;i++)
                            
            if(ind[i]==0) q1.push(i);
                        topsort();
                        
            for(i=1;i<=n;i++){
                            
            if(color[id[2*i-1]]=='R') printf("%d\n",2*i-1);
                            
            else printf("%d\n",2*i);
                        }

                    }

                }

                
            return 0;
            }

            posted on 2009-06-07 18:59 極限定律 閱讀(1182) 評論(1)  編輯 收藏 引用 所屬分類: ACM/ICPC

            評論

            # re: POI 2001 Peaceful Commission 2-SAT問題 2014-05-05 12:35 zzhhbyt

            您用的求scc的算法應該是叫做kosaraju而不是korasaju吧?  回復  更多評論   

            <2009年6月>
            31123456
            78910111213
            14151617181920
            21222324252627
            2829301234
            567891011

            導航

            統(tǒng)計

            常用鏈接

            留言簿(10)

            隨筆分類

            隨筆檔案

            友情鏈接

            搜索

            最新評論

            閱讀排行榜

            評論排行榜

            国产精品美女久久久久av爽 | 久久伊人亚洲AV无码网站| 99久久人妻无码精品系列蜜桃 | 精品综合久久久久久88小说 | 亚洲AV日韩AV天堂久久| 久久天天躁狠狠躁夜夜avapp| 久久久久女人精品毛片| 91久久国产视频| 精品永久久福利一区二区| 久久久久久久精品成人热色戒| 久久精品国产只有精品2020| 精品久久久久久久久免费影院| 亚洲精品高清国产一线久久| 久久伊人中文无码| 久久亚洲中文字幕精品一区| 93精91精品国产综合久久香蕉 | 久久精品国产一区二区| 亚洲国产精品嫩草影院久久| 久久青青国产| 久久久久亚洲国产| 久久ww精品w免费人成| 久久久久久精品久久久久| 亚洲午夜久久久久妓女影院| 久久午夜无码鲁丝片午夜精品| 人妻精品久久久久中文字幕69| 一本久久a久久精品综合夜夜 | 色狠狠久久AV五月综合| 伊人久久亚洲综合影院| 99久久亚洲综合精品成人| 国产婷婷成人久久Av免费高清| 97久久国产露脸精品国产| 日韩十八禁一区二区久久| 精品久久久久久无码人妻热| 久久最近最新中文字幕大全 | 91久久精品电影| 99久久精品免费| 国产福利电影一区二区三区久久老子无码午夜伦不 | 久久精品免费全国观看国产| 国内精品久久久久久中文字幕| 伊人久久大香线焦综合四虎| 免费国产99久久久香蕉|