• <ins id="pjuwb"></ins>
    <blockquote id="pjuwb"><pre id="pjuwb"></pre></blockquote>
    <noscript id="pjuwb"></noscript>
          <sup id="pjuwb"><pre id="pjuwb"></pre></sup>
            <dd id="pjuwb"></dd>
            <abbr id="pjuwb"></abbr>

            差分約束系統詳解

             

            差分約束系統

                在一個差分約束系統(system of difference constraints)中,線性規劃矩陣A的每一行包含一個1和一個-1A的其他所有元素都為0。因此,由Axb給出的約束條件是m個差分約束集合,其中包含n個未知量,對應的線性規劃矩陣Amn列。每個約束條件為如下形式的簡單線性不等式:xj-xibk。其中1i,jn,1km

                例如,考慮這樣一個問題,尋找一個5維向量x=(xi)以滿足:

             

                這一問題等價于找出未知量xi,i=1,2,…,5,滿足下列8個差分約束條件:

            x1-x20

            x1-x5-1

            x2-x51

            x3-x15

            x4-x14

            x4-x3-1

            x5-x3-3

            x5-x4-3

                該問題的一個解為x=(-5,-3,0,-1,-4),另一個解y=(0,2,5,4,1),這2個解是有聯系的:y中的每個元素比x中相應的元素大5。

             
            引理:設x=(x1,x2,…,xn)是差分約束系統Axb的一個解,d為任意常數。則x+d=(x1+d,x2+d,…,xn+d)也是該系統Axb的一個解。

             

            約束圖

               在一個差分約束系統Axb中,m X n的線性規劃矩陣A可被看做是n頂點,m條邊的圖的關聯矩陣。對于i=1,2,…,n,圖中的每一個頂點vi對應著n個未知量的一個xi。圖中的每個有向邊對應著關于兩個未知量的m個不等式中的一個。

               給定一個差分約束系統Axb,相應的約束圖是一個帶權有向圖G=(V,E),其中V={v0,v1,…,vn},而且E={ (vi,vj) : xj-xibk是一個約束}∪{ (v0,v1) , (v0,v2) , … , (v0,vn) }。引入附加頂點v0是為了保證其他每個頂點均從v0可達。因此,頂點集合V由對應于每個未知量xi的頂點vi和附加的頂點v0組成。邊的集合E由對應于每個差分約束條件的邊與對應于每個未知量xi的邊(v0,vi)構成。如果xj-xibk是一個差分約束,則邊(vi,vj)的權w(vi,vj)=bk(注意ij不能顛倒),v0出發的每條邊的權值均為0

              
            定理:給定一差分約束系統Axb,設G=(V,E)為其相應的約束圖。如果G不包含負權回路,那么x=( d(v0,v1) , d(v0,v2) , … , d(v0,vn) )是此系統的一可行解,其中d(v0,vi)是約束圖中v0vi的最短路徑(i=1,2,…,n)。如果G包含負權回路,那么此系統不存在可行解。

             

            差分約束問題的求解

               由上述定理可知,可以采用Bellman-Ford算法對差分約束問題求解。因為在約束圖中,從源點v0到其他所有頂點間均存在邊,因此約束圖中任何負權回路均從v0可達。如果Bellman-Ford算法返回TRUE,則最短路徑權給出了此系統的一個可行解;如果返回FALSE,則差分約束系統無可行解。

               關于n個未知量m個約束條件的一個差分約束系統產生出一個具有n+1個頂點和n+m條邊的約束圖。因此采用Bellman-Ford算法,可以再O((n+1)(n+m))=O(n^2+nm)時間內將系統解決。此外,可以用SPFA算法進行優化,復雜度為O(km),其中k 為常數。

            http://acm.pku.edu.cn/JudgeOnline/problem?id=1364

            Description

            Once, in one kingdom, there was a queen and that queen was expecting a baby. The queen prayed: ``If my child was a son and if only he was a sound king.'' After nine months her child was born, and indeed, she gave birth to a nice son.
            Unfortunately, as it used to happen in royal families, the son was a little retarded. After many years of study he was able just to add integer numbers and to compare whether the result is greater or less than a given integer number. In addition, the numbers had to be written in a sequence and he was able to sum just continuous subsequences of the sequence.

            The old king was very unhappy of his son. But he was ready to make everything to enable his son to govern the kingdom after his death. With regards to his son's skills he decided that every problem the king had to decide about had to be presented in a form of a finite sequence of integer numbers and the decision about it would be done by stating an integer constraint (i.e. an upper or lower limit) for the sum of that sequence. In this way there was at least some hope that his son would be able to make some decisions.

            After the old king died, the young king began to reign. But very soon, a lot of people became very unsatisfied with his decisions and decided to dethrone him. They tried to do it by proving that his decisions were wrong.

            Therefore some conspirators presented to the young king a set of problems that he had to decide about. The set of problems was in the form of subsequences Si = {aSi, aSi+1, ..., aSi+ni} of a sequence S = {a1, a2, ..., an}. The king thought a minute and then decided, i.e. he set for the sum aSi + aSi+1 + ... + aSi+ni of each subsequence Si an integer constraint ki (i.e. aSi + aSi+1 + ... + aSi+ni < ki or aSi + aSi+1 + ... + aSi+ni > ki resp.) and declared these constraints as his decisions.

            After a while he realized that some of his decisions were wrong. He could not revoke the declared constraints but trying to save himself he decided to fake the sequence that he was given. He ordered to his advisors to find such a sequence S that would satisfy the constraints he set. Help the advisors of the king and write a program that decides whether such a sequence exists or not.

            Input

            The input consists of blocks of lines. Each block except the last corresponds to one set of problems and king's decisions about them. In the first line of the block there are integers n, and m where 0 < n <= 100 is length of the sequence S and 0 < m <= 100 is the number of subsequences Si. Next m lines contain particular decisions coded in the form of quadruples si, ni, oi, ki, where oi represents operator > (coded as gt) or operator < (coded as lt) respectively. The symbols si, ni and ki have the meaning described above. The last block consists of just one line containing 0.

            Output

            The output contains the lines corresponding to the blocks in the input. A line contains text successful conspiracy when such a sequence does not exist. Otherwise it contains text lamentable kingdom. There is no line in the output corresponding to the last ``null'' block of the input.

            Sample Input

            4 2
            1 2 gt 0
            2 2 lt 2
            1 2
            1 0 gt 0
            1 0 lt 0
            0

            Sample Output

            lamentable kingdom
            successful conspiracy

            Source


            很典型的差分約束,關鍵在于怎么構圖。
            這里我們設Sum(i) = A1 + A2 + … + Ai-1
            那么輸入的si ni oi ki
            就可以轉換成如下的約束式:Sum(si+ni+1) - Sum(si) oi ki

            #include <iostream>
            using namespace std;

            const int MAXN = 120;
            const int inf = 0x7f;
            struct node{
                
            int s,e,v;
            }
            edge[MAXN];
            int n,m,d[MAXN];

            bool bellman_ford(){
                
            int i,j;
                
            for(i=0;i<=n+1;i++) d[i]=inf;
                
            for(d[0]=0,i=1;i<=n+1;i++)
                    
            for(j=0;j<=(n+m);j++)
                        
            if(d[edge[j].s]+edge[j].v<d[edge[j].e])
                            d[edge[j].e]
            =d[edge[j].s]+edge[j].v;
                
            for(i=0;i<=(n+m);i++)
                    
            if(d[edge[i].s]+edge[i].v<d[edge[i].e])
                        
            return false;
                
            return true;
            }

            int main(){
                
            char oi[5];
                
            int si,ni,k,i,j;
                
            while(scanf("%d",&n),n){
                    scanf(
            "%d",&m);
                    
            for(i=0;i<m;i++){
                        scanf(
            "%d %d\n",&si,&ni);
                        scanf(
            "%s %d",oi,&k);
                        
            if(oi[0]=='g')
                            edge[i].s
            =si,edge[i].e=si+ni+1,edge[i].v=-k-1;
                        
            else
                            edge[i].s
            =si+ni+1,edge[i].e=si,edge[i].v=k-1;
                    }

                    
            for(i=1,j=m;i<=n+1;i++,j++)
                        edge[j].s
            =0,edge[j].e=i,edge[j].v=0;
                    puts(bellman_ford()
            ?"lamentable kingdom":"successful conspiracy");
                }

                
            return 0;
            }

            posted on 2009-06-04 15:25 極限定律 閱讀(2190) 評論(0)  編輯 收藏 引用 所屬分類: ACM/ICPC

            <2009年4月>
            2930311234
            567891011
            12131415161718
            19202122232425
            262728293012
            3456789

            導航

            統計

            常用鏈接

            留言簿(10)

            隨筆分類

            隨筆檔案

            友情鏈接

            搜索

            最新評論

            閱讀排行榜

            評論排行榜

            欧美一区二区三区久久综| 国产精自产拍久久久久久蜜| 日本精品久久久久影院日本| 久久性生大片免费观看性| 久久亚洲精品无码aⅴ大香| 久久综合给合久久狠狠狠97色 | 香蕉久久av一区二区三区| 亚洲中文字幕无码久久2020| 久久婷婷国产麻豆91天堂| 久久久这里有精品中文字幕| 久久精品中文字幕无码绿巨人| 国产精品xxxx国产喷水亚洲国产精品无码久久一区 | 久久久噜噜噜久久中文字幕色伊伊 | 国产人久久人人人人爽| 亚洲国产成人精品无码久久久久久综合| 久久伊人精品一区二区三区| A级毛片无码久久精品免费| 性做久久久久久久| 久久久久久久久久久| 91亚洲国产成人久久精品网址| 无码AV中文字幕久久专区| 青青热久久国产久精品| 免费国产99久久久香蕉| 久久香蕉国产线看观看精品yw| 色婷婷狠狠久久综合五月| 国产精品青草久久久久婷婷| 少妇熟女久久综合网色欲| 久久精品综合一区二区三区| 四虎国产精品免费久久久| 久久美女网站免费| 国产精品久久网| 99久久精品国产一区二区三区 | 久久这里只有精品首页| 久久精品国产亚洲av影院| 久久久久久午夜成人影院| 久久婷婷五月综合97色一本一本| 色综合久久夜色精品国产| 国产精品久久久久久久app| 午夜精品久久久久久影视777| 久久久精品久久久久久 | 国产亚洲成人久久|