• <ins id="pjuwb"></ins>
    <blockquote id="pjuwb"><pre id="pjuwb"></pre></blockquote>
    <noscript id="pjuwb"></noscript>
          <sup id="pjuwb"><pre id="pjuwb"></pre></sup>
            <dd id="pjuwb"></dd>
            <abbr id="pjuwb"></abbr>

            POJ 2195 Going Home 二分圖完美匹配

            Description

            On a grid map there are n little men and n houses. In each unit time, every little man can move one unit step, either horizontally, or vertically, to an adjacent point. For each little man, you need to pay a $1 travel fee for every step he moves, until he enters a house. The task is complicated with the restriction that each house can accommodate only one little man.

            Your task is to compute the minimum amount of money you need to pay in order to send these n little men into those n different houses. The input is a map of the scenario, a '.' means an empty space, an 'H' represents a house on that point, and am 'm' indicates there is a little man on that point.

            You can think of each point on the grid map as a quite large square, so it can hold n little men at the same time; also, it is okay if a little man steps on a grid with a house without entering that house.

            Input

            There are one or more test cases in the input. Each case starts with a line giving two integers N and M, where N is the number of rows of the map, and M is the number of columns. The rest of the input will be N lines describing the map. You may assume both N and M are between 2 and 100, inclusive. There will be the same number of 'H's and 'm's on the map; and there will be at most 100 houses. Input will terminate with 0 0 for N and M.

            Output

            For each test case, output one line with the single integer, which is the minimum amount, in dollars, you need to pay.

            Sample Input

            2 2
            .m
            H.
            5 5
            HH..m
            .....
            .....
            .....
            mm..H
            7 8
            ...H....
            ...H....
            ...H....
            mmmHmmmm
            ...H....
            ...H....
            ...H....
            0 0
            

            Sample Output

            2
            10
            28
            

            Source


                題目大意:有m個人要進h間房子,從當前位置(x1,y1)進入房子(x2,y2)的時間為|x1-x2|+|y1-y2|,問這m個人都進入房間所需的最小時間是多少。問題可以轉化為帶權二分圖的最小權匹配,以sample 2為例先建立二分圖:
             
            (m1,h1)=4,(m1,h2)=3,(m1,h3)=4,(m2,h1)=4,(m2,h2)=5,(m2,h3)=4,(m3,h1)=5,(m3,h2)=4,(m3,h3)=3.
            然后用KM算法求解,代碼中的注釋部分為最大權匹配。
            #include <iostream>

            const int MAX = 101;
            const int MAXN = 10001;
            const int inf = 0x7FFFFFFF;
            struct point{
                
            int x,y;
            }
            man[MAXN],home[MAXN];
            bool vx[MAX],vy[MAX];
            int m,h,map[MAX][MAXN],lx[MAX],ly[MAX],match[MAX];

            bool dfs(int u){
                
            int i;
                
            for(vx[u]=true,i=0;i<h;i++)
                    
            if(!vy[i] && lx[u]+ly[i]==map[u][i]){
                        vy[i]
            =true;
                        
            if(match[i]==-1 || dfs(match[i])){
                            match[i]
            =u;
                            
            return true;
                        }

                    }

                
            return false;
            }

            int kuhn_munkras(){
                
            int i,j,k,min,ans;
                
            for(i=0;i<m;i++)
                    
            for(lx[i]=inf,j=0;j<h;j++)
                        
            if(map[i][j]<lx[i]) lx[i]=map[i][j];
              
            //for(i=0;i<m;i++)
              
            //    for(lx[i]=-inf,j=0;j<h;j++)
              
            //        if(map[i][j]>lx[i]) lx[i]=map[i][j]; 最大權匹配
                for(i=0;i<h;i++) ly[i]=0;
                memset(match,
            -1,sizeof(match));
                
            for(i=0;i<m;i++){
                    
            while(true){
                        memset(vx,
            false,sizeof(vx));
                        memset(vy,
            false,sizeof(vy));
                        min
            =inf;
                        
            if(dfs(i)) break;
                        
            for(j=0;j<m;j++){
                            
            if(vx[j]){
                                
            for(k=0;k<h;k++)
                                    
            if(!vy[k] && map[j][k]-lx[j]-ly[k]<min)
                                        min
            =map[j][k]-lx[j]-ly[k];
                                  
            //if(!vy[k] && lx[j]+ly[k]-map[j][k]<min)
                                  
            //    min=map[j][k]-lx[j]-ly[k]; 最大權匹配
                            }

                        }

                        
            for(j=0;j<m;j++if(vx[j]) lx[j]+=min;
                        
            for(j=0;j<h;j++if(vy[j]) ly[j]-=min;
                    }

                }

                
            for(ans=i=0;i<h;i++) ans+=map[match[i]][i];
                
            return ans;
            }

            int main(){
                
            char ch;
                
            int i,j,row,colum;
                
            while(scanf("%d %d",&row,&colum),row||colum){
                    
            for(getchar(),m=h=i=0;i<row;i++){
                        
            for(j=0;j<colum;j++){
                            ch
            =getchar();
                            
            if(ch=='m')
                                man[m].x
            =i,man[m].y=j,m++;
                            
            else if(ch=='H')
                                home[h].x
            =i,home[h].y=j,h++;
                        }

                        getchar();
                    }

                    memset(map,
            0,sizeof(map));
                    
            for(i=0;i<m;i++)
                        
            for(j=0;j<h;j++)
                            map[i][j]
            =abs(man[i].x-home[j].x)+abs(man[i].y-home[j].y);
                    printf(
            "%d\n",kuhn_munkras());
                }

                
            return 0;
            }

            posted on 2009-06-03 12:45 極限定律 閱讀(814) 評論(0)  編輯 收藏 引用 所屬分類: ACM/ICPC

            <2009年6月>
            31123456
            78910111213
            14151617181920
            21222324252627
            2829301234
            567891011

            導航

            統計

            常用鏈接

            留言簿(10)

            隨筆分類

            隨筆檔案

            友情鏈接

            搜索

            最新評論

            閱讀排行榜

            評論排行榜

            亚洲欧美成人久久综合中文网| 草草久久久无码国产专区| 久久精品一本到99热免费| 精品国产日韩久久亚洲| 亚洲精品无码久久久久去q| 99久久综合狠狠综合久久止| 久久精品亚洲欧美日韩久久| 久久亚洲欧美国产精品| 国产精品va久久久久久久| 亚洲AV无码久久精品蜜桃| 久久九九久精品国产| 午夜人妻久久久久久久久| 久久久久国产| 日韩欧美亚洲综合久久影院d3| 欧美粉嫩小泬久久久久久久| 国产精品天天影视久久综合网| 亚洲欧美日韩精品久久亚洲区| 51久久夜色精品国产| 久久精品国产亚洲AV嫖农村妇女 | 精产国品久久一二三产区区别| 精品久久久久久成人AV| 成人午夜精品无码区久久| 中文精品99久久国产| 蜜臀久久99精品久久久久久 | 久久久久亚洲AV成人网| 久久精品国产99国产电影网| 老色鬼久久亚洲AV综合| 国产成人综合久久综合| 亚洲色婷婷综合久久| 综合久久一区二区三区| 欧美午夜精品久久久久久浪潮| 香港aa三级久久三级| 日本一区精品久久久久影院| 91久久精品视频| 久久久久久国产a免费观看不卡| 91精品婷婷国产综合久久| 久久狠狠色狠狠色综合| 国产 亚洲 欧美 另类 久久| 色综合久久精品中文字幕首页 | 99久久精品无码一区二区毛片 | 精品精品国产自在久久高清 |