• <ins id="pjuwb"></ins>
    <blockquote id="pjuwb"><pre id="pjuwb"></pre></blockquote>
    <noscript id="pjuwb"></noscript>
          <sup id="pjuwb"><pre id="pjuwb"></pre></sup>
            <dd id="pjuwb"></dd>
            <abbr id="pjuwb"></abbr>

            POJ 3164 Command Network 最小樹形圖

            Description

            After a long lasting war on words, a war on arms finally breaks out between littleken’s and KnuthOcean’s kingdoms. A sudden and violent assault by KnuthOcean’s force has rendered a total failure of littleken’s command network. A provisional network must be built immediately. littleken orders snoopy to take charge of the project.

            With the situation studied to every detail, snoopy believes that the most urgent point is to enable littenken’s commands to reach every disconnected node in the destroyed network and decides on a plan to build a unidirectional communication network. The nodes are distributed on a plane. If littleken’s commands are to be able to be delivered directly from a node A to another node B, a wire will have to be built along the straight line segment connecting the two nodes. Since it’s in wartime, not between all pairs of nodes can wires be built. snoopy wants the plan to require the shortest total length of wires so that the construction can be done very soon.

            Input

            The input contains several test cases. Each test case starts with a line containing two integer N (N ≤ 100), the number of nodes in the destroyed network, and M (M ≤ 104), the number of pairs of nodes between which a wire can be built. The next N lines each contain an ordered pair xi and yi, giving the Cartesian coordinates of the nodes. Then follow M lines each containing two integers i and j between 1 and N (inclusive) meaning a wire can be built between node i and node j for unidirectional command delivery from the former to the latter. littleken’s headquarter is always located at node 1. Process to end of file.

            Output

            For each test case, output exactly one line containing the shortest total length of wires to two digits past the decimal point. In the cases that such a network does not exist, just output ‘poor snoopy’.

            Sample Input

            4 6
            0 6
            4 6
            0 0
            7 20
            1 2
            1 3
            2 3
            3 4
            3 1
            3 2
            4 3
            0 0
            1 0
            0 1
            1 2
            1 3
            4 1
            2 3

            Sample Output

            31.19
            poor snoopy

            Source


             

            最小樹形圖算法(Zhu-Liu Algorithm)

            1.       設最小樹形圖的總權值為cost,置cost0

            2.       除源點外,為其他所有節點Vi找一條權值最小的入邊,加入集合TT就是最短邊的集合。加邊的方法:遍歷所有點到Vi的邊中權值最小的加入集合T,記pre[Vi]為該邊的起點,mincost[Vi]為該邊的權值。

            3.       檢查集合T中的邊是否存在有向環,有則轉到步驟4,無則轉到步驟5。這里需要利用pre數組,枚舉檢查過的點作為搜索的起點,類似dfs的操作判斷有向環。

            4.       將有向環縮成一個點。設環中有點{Vk1,Vk2,…,Vki}i個點,用Vk代替縮成的點。在壓縮后的圖中,更新所有不在環中的點VVk的距離:

            map[V][Vk] = min {map[V][Vkj]-mincost[Vki]} 1<=j<=i

            map[Vk][V] = min {map[Vkj][V]}           1<=j<=I

            5.       cost加上T中有向邊的權值總和就是最小樹形圖的權值總和。

            #include <iostream>
            #include 
            <cmath>

            #define min(a,b) (a<b ? a:b)

            const int MAXN = 110;
            const int INF = 0x7FFFFFFF;
            int n,m,pre[MAXN];
            double x[MAXN],y[MAXN];
            bool circle[MAXN],visit[MAXN];
            double ans,map[MAXN][MAXN];

            inline 
            double distance(double x1,double y1,double x2,double y2){
                
            return sqrt((x1-x2)*(x1-x2)+(y1-y2)*(y1-y2));
            }

            void dfs(int u){
                visit[u]
            =true;
                
            for(int i=2;i<=n;i++)
                    
            if(!visit[i] && map[u][i]!=INF)
                        dfs(i);
            }

            bool connected(){
                memset(visit,
            false,sizeof(visit));
                
            int i,cnt=0;
                
            for(i=1;i<=n;i++)
                    
            if(!visit[i])
                        dfs(i),cnt
            ++;
                
            return cnt==1 ? true : false;
            }

            void min_arborescence(){
                
            int i,j,k;
                memset(circle,
            false,sizeof(circle));
                
            while(true){
                    
            for(i=2;i<=n;i++){
                        
            if(circle[i]) continue;
                        pre[i]
            =i;
                        map[i][i]
            =INF;
                        
            for(j=1;j<=n;j++){
                            
            if(circle[j]) continue;
                            
            if(map[j][i]<map[pre[i]][i])
                                pre[i]
            =j;
                        }

                    }

                    
            for(i=2;i<=n;i++){
                        
            if(circle[i]) continue;
                        j
            =i;
                        memset(visit,
            false,sizeof(visit));
                        
            while(!visit[j] && j!=1){
                            visit[j]
            =true;
                            j
            =pre[j];
                        }

                        
            if(j==1continue;
                        i
            =j;
                        ans
            +=map[pre[i]][i];
                        
            for(j=pre[i];j!=i;j=pre[j]){
                            ans
            +=map[pre[j]][j];
                            circle[j]
            =true;
                        }

                        
            for(j=1;j<=n;j++){
                            
            if(circle[j]) continue;
                            
            if(map[j][i]!=INF)
                                map[j][i]
            -=map[pre[i]][i];
                        }

                        
            for(j=pre[i];j!=i;j=pre[j])
                            
            for(k=1;k<=n;k++){
                                
            if(circle[k]) continue;
                                map[i][k]
            =min(map[i][k],map[j][k]);
                                
            if(map[k][j]!=INF)
                                    map[k][i]
            =min(map[k][i],map[k][j]-map[pre[j]][j]);
                            }

                        
            break;
                    }

                    
            if(i>n){
                        
            for(j=2;j<=n;j++){
                            
            if(circle[j]) continue;
                            ans
            +=map[pre[j]][j];
                        }

                        
            break;
                    }

                }

            }

            int main(){
                
            int i,j,u,v;
                
            while(scanf("%d %d",&n,&m)!=EOF){
                    
            for(ans=i=0;i<=n;i++for(j=0;j<=n;j++) map[i][j]=INF;
                    
            for(i=1;i<=n;i++) scanf("%lf %lf",&x[i],&y[i]);
                    
            while(m--){
                        scanf(
            "%d %d",&u,&v);
                        map[u][v]
            =distance(x[u],y[u],x[v],y[v]);
                    }

                    
            if(!connected()) puts("poor snoopy");
                    
            else{
                        min_arborescence();
                        printf(
            "%.2lf\n",ans);
                    }

                }

                
            return 0;
            }

            posted on 2009-05-26 16:03 極限定律 閱讀(677) 評論(0)  編輯 收藏 引用 所屬分類: ACM/ICPC

            <2009年5月>
            262728293012
            3456789
            10111213141516
            17181920212223
            24252627282930
            31123456

            導航

            統計

            常用鏈接

            留言簿(10)

            隨筆分類

            隨筆檔案

            友情鏈接

            搜索

            最新評論

            閱讀排行榜

            評論排行榜

            91麻豆精品国产91久久久久久| 精品无码久久久久国产| 久久综合九色综合精品| 久久精品草草草| 久久亚洲精品无码播放| 亚洲精品乱码久久久久久| 久久99热精品| 国产色综合久久无码有码| 国产午夜精品久久久久免费视| 亚洲国产成人久久精品影视| 国产香蕉久久精品综合网| 国产精品久久国产精品99盘| 亚洲一区精品伊人久久伊人| 91精品国产91久久综合| 久久精品一区二区三区AV| 久久综合九色综合精品| 色偷偷偷久久伊人大杳蕉| 久久久不卡国产精品一区二区| 久久午夜羞羞影院免费观看| 午夜精品久久久久9999高清| 久久精品国产91久久综合麻豆自制| 久久国产亚洲精品| 久久er国产精品免费观看8| 精品国产一区二区三区久久久狼| 少妇无套内谢久久久久| 国产精品久久久天天影视香蕉| AV无码久久久久不卡蜜桃| 国内精品人妻无码久久久影院导航| 久久九九久精品国产免费直播| 91久久精品电影| 91精品国产色综久久| 欧美一区二区精品久久| 久久免费国产精品一区二区| 久久精品国产第一区二区三区| 无码人妻少妇久久中文字幕蜜桃| 国内精品久久久久影院亚洲| 久久午夜福利无码1000合集| 久久精品国产亚洲AV久| 亚洲国产精品无码成人片久久 | 亚洲伊人久久精品影院| 久久久久久免费视频|