原題:
??Write the function int bitCount(short input) that takes a short as input and
? returns an int.? The function returns the number of bits set in the input
? variable.? For instance:
? bitCount(7) --> 3
? bitCount(2543) --> 9
? bitCount(11111) --> 9
? 該題在《面試系列1...》中有解答,網友一修指出了答案的缺點,并給出了另外一個效率極高的算法,非常感謝,貼出來跟大家分享。?
/*
?* 平均效率比較低,最壞情況要循環sizeof(x) * 8次。
?* 看看下面這個函數,是針對32位的,至于其它位數稍加修改就可以了。
?*
?* return number of bits set
?*/
unsigned int bitcount32(unsigned int x)
{
??? x = (x & 0x55555555UL) + ((x >> 1) & 0x55555555UL); // 0-2 in 2 bits
??? x = (x & 0x33333333UL) + ((x >> 2) & 0x33333333UL); // 0-4 in 4 bits
#if 1
??? // Version 1
??? x = (x & 0x0f0f0f0fUL) + ((x >> 4) & 0x0f0f0f0fUL); // 0-8 in 8 bits
??? x = (x & 0x00ff00ffUL) + ((x >> 8) & 0x00ff00ffUL); // 0-16 in 16 bits
??? x = (x & 0x0000ffffUL) + ((x >> 16) & 0x0000ffffUL); // 0-31 in 32 bits
??? return x;
#else
??? // Version 2
??? x = (x + (x >> 4)) & 0x0f0f0f0fUL; // 0-8 in 4 bits
??? x += x >> 8; // 0-16 in 8 bits
??? x += x >> 16; // 0-32 in 8 bits
??? return x & 0xff;
#endif
}
補充一下:
因為網友一修給出的代碼中注釋比較少,而精煉的代碼又比較難理解,所以我來說說我的看法,如果有不對的地方,還請大家多多指導。
關于二進制數的理解,二進制數每一位只能為0和1,因此在這個地方,我們可以理解為每一位都可以表示該位中包含1的數目。
看第一行代碼:x = (x & 0x55555555UL) + ((x >> 1) & 0x55555555UL);
5的二進制是 0101,當x & 0x55555555UL得出的結果是保留了0, 2, 4, 6 ... , 30 位的值,即 0, 2, 4, 6 ,... , 30 位中包含1的數目;那么自然可以理解(x >> 1) & 0x55555555UL得出的結果是保留了1, 3, 5, 7, ... , 31 位的值,即 1, 3, 5, 7, ..., 31 位中包含1的數目。把兩者相加起來:
??? xxxx xxxx xxxx xxxx xxxx xxxx xxxx xxxx
? +0101 0101 0101 0101 0101 0101 0101 0101
------------------------------------------------------------------------
??? 0x0x 0x0x 0x0x 0x0x 0x0x 0x0x 0x0x 0x0x??????????????????????????? (這里的x即為x中?0, 2, 4, ... , 30?位的值)
?
??? 0xxx xxxx xxxx xxxx xxxx xxxx xxxx xxxx
? +0101 0101 0101 0101 0101 0101 0101 0101
------------------------------------------------------------------------
??? 0y0y 0y0y 0y0y 0y0y 0y0y 0y0y 0y0y 0y0y??????????????????????????? (這里的y即為x中 1, 3, 5 , ... , 31 位的值)
?
??? 0x0x 0x0x 0x0x 0x0x 0x0x 0x0x 0x0x 0x0x
? +0y0y 0y0y 0y0y 0y0y 0y0y 0y0y 0y0y 0y0y
------------------------------------------------------------------------
??? zz zz zz zz zz zz zz zz
??? 可以把32位的X數每兩位看成一個最小單元,x+y的值z即為這個兩位最小單元中,1的個數。可以看出,巧妙地把兩個加數種0的空間用來保存進位。那么到現在為止,我們就得到了數X中,每兩位為最小單位,每兩位中的數值表示著這兩位中1的個數。
??? 依此類推,接下來我們用同樣的方法計算以4位為最小單位,4位中的數值表示該4位中1的個數,即:x = (x & 0x33333333UL) + ((x >> 2) & 0x33333333UL);
??? 然后是 8位, 16位,當計算到以32位為最小單位,32位中的數值表示該32位中1的個數的時候,答案就揭曉了。
?